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A unified theory of planning and debugging is explored by designing a problem
solving program called PATN. PATN uses an augminted transition network (ATN) to

(The ATN [Woods 1970) is.a simple yet powerful formalism )1hichgi
represent a bioad range of planning techniques, including identification, decomposition,
and reforulatio

' has been effectively ,utilited in computational linguistics.) ,

PATN 's plans may,, manifest *rational bugs," which result from heu tically
justifiable but incorrect arc transitions in the planning ATN. This aspect of. the theory
is developed by designing.a.compleinentary debugging module called DAPR, which
would diagnose and repair the errors in .PATN's.annotated plans.

,

Th investigation-is incomplete: PATN has not yet been iMplerriented., But
suffici t detail is preseited to provide a theoretical framework for reionceptualizing
Sussman 1 HACKER research.

4

Since a detaile0-study of planning and debugging techniques is a prerequisite for
complete fulfillment of Dijkstra's objectives of program reliability, readability,
portability, and so on, the theory is called, "Structured Planning and Debugging;' to
emphasize its potential role in this enterprise.

This report is a revised version of Al Working Paper 125 (Logo Working Paper 35), It
describes research done at the Artificial Intelligence Laboratory of the MassachOsetts Institute of
Technology. ,It was supported' in part by the National Silence Foundation under grant C40708X,
M part by the Advanced Research Projects Agency of the Department of Defense under Office of
Naval Research contract N00014-75-C-01143, and in part by the Division for Study and Res arch In
Education, Mauachuseits Institute of Technology.
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Structured Planning and Debugging 3 Goldstein & Miller

1. Introduction

Though it is difficult to. prescribe any Thing in these Sorts of Cases, and every
Person's own Genius ought.t.to be his Guide in these Operations; yet l will
endeavor, to show the Way to Learners.

Newton, Universal Arithmetick by Ralphson, 1769, p.
from polys 1965,-p.

+a_

The structured programming movement Wahl-et al. 19721 has focused ,the concern of

computer scientists on the process of szeating prsigrams. Work in artificial intelligence (Al) has

deVeloped a complementary theory of debugginf [Suisman 1973; Goldstein 19741 But, except for

Sacerdoti, (19751.work on procedural nets, a comprehensive approach has not yet bien attempted:

This is a preliminary report on a theory called Structured arming and Debugging' which we

believe to be a step towards an integrated theory of design.

114

(

Our task has two aspects. First, werhope to understand certain intricacies of planning and
,

debugging, such as are encountered in the design of program! which must, take into account

interactions in achieving dependent subgoals. tThe secondisPect of our task is to seek a

representational framework in which to elucidate theie subtleties, and in which to structure a wide

variety o( planning techniques. Our methodology is to begin with iimple but clear formal ms,

studying their virtues and limitations. Our research plan is then to investigate a series of

4

progressively more powerful and elaborate representations, after we have reached a solid

understanding as to where the extra power is needed, and why: .

In earlier work, we have studied one particularly s imple representation for planning

knowledg. context free grammars (e.g., [Miller Sc GOldstein1976bD, In this essay we piirsue.the

investigation by exploring the use'of a more elaborate- formalism. We utilize an augmented

transition' network (ATN) [Woods 1970)2 to represent an hierarchical taxonomy of planning
r

methods. We are exploring ATNs as a representation for planning concepts because thefdirectly

rer!lize
context free grammars, and because 'work IA computational linguistics has shown them

4 r4
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to be both perspicuous and rich in e
1

es.slve power.'

d
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An syN, is a finitt_gatt traXsition fraph with labelled stites and arcs; augmented by

e-

. l A
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,itkrecursion and a finite number o registers. Associated with each arc may be conditions on

following the arc, and actions to ,fie executed if the arc is followed. Typically the conditions ,are
/ 1

. .

rtstricted to liciolean predicates/over the contents of the registers The actions are- restricted, to

structure building and 7(odifyi g the contents of the regimes:. ,

J 2 Weia ply the ATN fo4nalism to planning by representing possible planning decisions as.
., -transitions nodesof /the network. The semantic context, including the 'problem description.,

is defined using the ATN's registers. Prigniatic knowledge, specifying which planning strategies.
, 1 \

to apply.in which situations, is modeled by arc transition constraints, The ATN constructed in this' '

fashion defines a probleM solving program railed PATN (Planning ATN).

. , CAVEAT: to simplify the discussion we spie- of .PATN as if it were a

7 working prograM. However, at this point in time, PA-TN is only a design.

, This design is suffkientiy precise to be hand-simtilated on simple problems, but

thorough testing must await implementation.
.

...

The possibilitykof rational errors makes debugging an important part of ry problem solving\ . .
,theory. Rational errors are defined as mistakes in pbnning that'arise from the use of reasonable. . -

heuristics. This aspect of our theory is developed by designing DAPR (an acronym for Debugger ,.
A

E. 1of Annotated P Regrew), a debugging module for use with'PATN. In DAPR tenni, diagnosis is

,

the isolation of incorrect or incomillite transitions made between ATN states during the planning

process: Repair consists of re-planning, guided by advice from the diagnosis. A descriPtion of

basic bug types in terms of specific errors in the planning process is undertaken. DAPR would
..

.

diagnose and repair annotated programs, in that a 'record of PAIN'S planning' decisions (thei1
.derivation tries) is expected to be associated with the code.

l .

Throughout the paper, we employ examples from two benchmark Al domains: - the blocks

t
5

I

1

J
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`Structured Planning and Debugging 5 Goldstein itc,Miller

world,and the Logo 'turtle world Mapert 1971a, 1971b, 19731 Melts world problem solvers include

stirica,u [Winograd 1972], BUILD rFahlmin 19741, HACKER [Sussman 1973) and NOAH

[SAceriloti 19751 Henwapplying PATN to taer blocks Worlarprovides a common- set 'of problems

for comparison. The virtues of the Lbgo graphics world-are: (a) graphics is an environment in

Which multiple problem descriptions. are possibl.. ranging ffom Euclidean geometry 1st Cartesian

geometry; (b) the yossibk programs range over wide spectrum of complexity; and (c) extensive
1 40

documtntation exisii on human performance in.this area (G, Goldstein 1973; Okumura 1973).

'Section two presents a taxonomy of, planning techniques, and usetthis 'taxonomy to construct

thti planning ATN. This defines a basic problem solver which, due to its reliance on exhaustive

backtracking search in traversing theATN, would be inefficient. The third section addresses this

drawback, discussingsUbtleties in 'planning when viewed as a search'process Since certain .
sel

heuristically justifiable planhink choices can nonetheless lead to bugs; tion four develops a

(-\
cornplementiry theory of debugging.' This allows for reconceptualizini Sussman's (1973) HACKER/

%

in section five. . The concluding section comsiders limitations, extensions, and applicitions of the

Structured Planning and Debuggi approach.-
; -%

?
,
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2.
.
red Planning

I
For a fortnight I had be en attempting to prove that there could not be any

fund . I was at thatksts,function analogous to what I have since called Fuchsias
time(very ignorant. Every day I sal-down at my table and :pen an hour or two
trying a great number of combinations, and I arrived at no result. One night Ir .
took some black coffee, contrary to my custom, and was unable to sleep. A host
ol ideas kept surging in my bead; I could almost fool them jostling one another,
until two of them coalesced, so to spesIC, to form a stable combination. When
morning. came, I had established The existent* of one clasi of Fuchsian functio9s

Poinesre, it, "Mathematical Discovery,' in [Rapport 1963, p. 132.1,
) ,

7

Goldstein & Miller

.

\

4,

In this passage, Poincare seems to suggest that human problem' solving relies heavily upon

laborious consideration of numerous possibilities. Is Poincare correct, or is there a well organized

collection of planning concepts to guide the problem solver? Polya's rriany insightful analysei D957,
,

, .

1962, 1965, 1967] support the assertion that planning knowledge is highly structured. This section
s

pursues a view closer to Polya's, by classifying plans, and by developing that classification into a

proceduril theory of design.

Figure I shows an hierarchical taxonomy of common pinning techniques.4 We shall

illustrate hOw an ATN can be used .to. represent this planning knowledge procedurally., by

0 s--./'

scrutinizing ,solution by (a) identification with previous solutions and (b) decomposition into '

conjunctive subgoals. The taxonomy shown In the" figure is more extensive than this, in order to

indiCate the context:in which our discussion takes place. Relocation and reformulation are

considered, briefly, near thi end of this section.

, . .

in the taxonomy, planning begins with a choice beiWeen three methods -- identification,

decomposition and reformulation. By identification, we mean reciviting the problem as one

which has previously been solved, or noticing that.the current problem is a direct special case of

one which s previously been solved. By decomposition, we mean dividing lie current problein

into sub-prgblerns hich are (hopefully) easier to solve. The third category, reformu/adon, refers to

. transforming the problem description into an alternative form whose solution is equivalent to, or. a

- ...,. .
I

...

t

oh

0-

--/ ' 4.
,
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COMPOSITION

CURS ION

G ROOP %

GENERIC (-> EXP C I T

SPEC IALI ZE

NERALI ZE

ALOGY /-,
FIGURE ].

TAXONOMY OF PLANNING CONCEPTS
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- least a stepping stone towards,the solution of the original problem,

1

2.1. An Aistmented Transition Network for Planning

Before presetting, additional detach concerning our dauification of planning techniques, it

may be helpful to introduce the manner iW,which our definitions are formalized via representing

them in an ATN. Figure 2-provides a global view of PATN, showing the connections between the

various planning. stat41;-,The 'stage is set by conceptualizing our planning taxonomy as a decision

tree .of alternative plans. The decision process is rnddeled by a correspondihg finite state transition
,

diagram: .each named plan type in the taxonomy becomes a state in the transition graph; each

'subset link" become5 an arc.

This planning taxonomy (d ision tree) itxmverted to procedural following

augmentations:-

-.(.1) Registers: Several registers are introduced to carry the semantics of the problem
solving process. This includes the specifications for the procedure currently.
being'constructed (Model), and the currently proposed solution (S). Figure 3 is
a list of the registers`vshia are used in this repoft

(2) Arc Ordering The arcs emanating from each nod, (representing alternative
planning decisions) are didered, thereby .definine a backtracking algorithm.
The defria ordering from a given node is clockwise, beginning at the entrance
point of the ibi ing arc. This ordering es linilles prior judgments about the
relative sump ity and probability of success of alternative planning methods.

Arcs Predicates: The basic arc ordering is supplemented by associating
conditions (predicates) with ar`csf In the ". ATN formalism, arc predicates are
employed to determine the legality of a transition. By examining the contents
of the regi rs, these arc predicates can make planning choices more sensitive
to the prob em context.

(4) Arc Actions: The contents of the registers may be modified by ations
associated with various arcs. The actioni are performed if and only if the arc
is followed.

(5) Linearization Cycle-The nature of nonlinearity is carefully examined, and, as a
result, a linearization cycle is introduced. This involves the arcs from the
CONJ glue to the NLC and NLD states in figure 2. If the arc from CONJ to
NLD is lielloWed,ifor example, the M register is elided to reflect a non-linear

9
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0
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Goals

Example Re inters: .

Register M - Predicate logic problem description
Register S - Current solution (}Flan derivation)

Register Goals -7--Current set of subgoals

. .__ .

Example Conditions: .

. . MeEibrary - "Is problem description matched by
anything.in the ans'Aer library?".

Generic (M) - "Is the problem desCription repre-
sented as a generic element?".

Example Actions:
Goals -4--ThTe s t Coals-"Set register goals to. its current

contentsminus subgoal C
iS4-Library(M) "Return the solutior found in

the answer library."

- FIGURE 2 -- A GLOBAL "OFWCF.PATN
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Flours 3. Registers Used by PATS

N -- The problem-specificen or 'model.
.

$ -- The current solution.

-%

`Gdldstein & Miller

4

. CAVEATS -- A ,list of oeaninis regarding possible eftors generated during

planning to aid in later debugging.

'ADV14-- A list of recommenilatinns to guide 'the plannir in subsequent

decisions. Cobstaaints on the Ardor, of invoking subprocedures-,

for example, ere recorded in (this register.

. . .

MULL-- The Set of subgoals mime solutions are currently pending.
.

0 --.The current subgoal, which, is about to be solved by a recursive call to

PAN.' . 7

1
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,

decomposition(as explained shortly).

I -: '''. (6) Refinement Look.c.4 sequential refinement, loop is introduced, which selects a
tioh -order for subgoals 4n1Precursively solves fot them. ....k.

'.. .....
-.4, .

-^I(. ,
... (' . ,

.

, . . .

The res jai I 140aniorphosis is the augmented transition network for planning (PATN).
7 1

7%*
, i

, -0

a . t.0 , -
.,

..

Jr

t
, i' .711

2.2. Plan Nods
4 f ,

ps Method consists entirely in properly orderingiod, arranging the -things to which
we pay attention. .

4
.

'40?
Descartes,,QEuvret, vol. If, p. 379; 'Rules foigthe Direction of the Mind'
(Rule V), frora[Polya 1965, p. 77]

, .
. , .

. , ,e- C , .
- .

PATNri first planning Choice involy6 selection between, the mijor-caiillri*1 of idertification,

decomposition, and -reformulation. We now consider how this first part of (..beplan'n*Ing process is
at,. .

. _

. represented in the ATN (figure 4).fThe arc's in-the figure have been labelled by small letters to
"

facilitate discussion. Arc a' begins the iilanning pro'cess by setting Fl to the formal description of
, , , J..,_ . .

the Aroblem. Arcs b, c and d are the possible tr4lbsitiOns from the PLAN state. *he default
. . ,

4%oidering is or IENTIFICATISK to -be attempted _before DECOMPOSITION or

A REFORMULA ION. This reflects, the heifristic judgment that it is preferable to check it the
°

answer is sires known before attempting to decompose the problem into subgoals or reformulate

. theproblecn d ription.
. .

PLAN to IDENTIFY has an are constraint. Identification is pursued only if the
..

,

problem-model M r be found in the answet library.' If it can, PATN. will ecute'arc e. Here, S,
. , .

the solution register, is set to the answer foursO.in the library. The PO causes PATH to return
*

with answir. There, are nti arc ,predicates on arcs c -or d because DEC9M POSE, and

*REFORMULATE Ire intended to bleapPlicable to any model. Section 2.3 pursues the dlicussion

Or:following arc b.
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ME LIBRARY
r

I .4:
. M-MODEL PLAN

a
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(3).

,

b

(2)

a
IDENTIFY (M)

a

DECOMPOSE

7

j

FIGURE 4
'PATN's PLAN NODE
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2,3. Problom Identification.

AV.

Goldjtein & Miller

From desire ariseth the thought of some means we have een produce the like of
that which we aim at; _ and from the Usought of that, the hough, of means to that
!neap; and so continually, till we come, to same beginni withilPour own power.

Thomas 'Hobbes, Leviathon (Chapter III); in (Po ya 1965,, p. 22) ."*"..N.1..........01, .
r . l

Problem ifentiftration is the minimal technique required f solving problems: retrieval from

a library of known solutions. (This is not to say that there are no subtleties involved in designing

this component of a procedufal problem' solver.) The power of the techniqgkirises from: (a) the

extensibility of the library; and (1)rthe manner in,hich solutions are indexed by their problem

descriptions, to facilitate retrieval th appropriate situatiOns.

The answer library is Jnitialited With tke primitives provided by the problem domain of

tetffest, described by their-effects. Each problem which is subsequently solved is added to the

library? The answer library therVby grows in breadth with each successful problem solving

.eptiode. As a resuk, a problem which could not have been solved in reasonable time initially may

bliCome realistically solvable later, when one or more of its sub-problems have been solved' and

added to the library.

ill develop problem identification rigorously, a precise description of primitives and problems

is required.',For our purposes in this report, a problem is represented as a conjuition of assertions

about a set of objects, their properties. and their relationships. This formal problem specifielttion is

called the model.6 This is a traditional' method: although we use a,different notation which e

find more convenient, our models could be straightforwardly translated into statetnents in the

.-..predicate calculus

Entries in the answer library have two parts: a Pre Model, and a Posi Model. The Pro

Model is a o nction of assertions which are p requisites for the entry: the entry is not

guaranteed to work if these assertions are tisfied. The Post Model is a conjunction of

assertions which describe the effect of the entry: the goal which it is to accomplish. <This

4

15
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approach is analogous to the definition of o jatori In STRIPS Vikeket al. 19721) For PATH,

primitives silt) problems are indexed by their Post models only. ,

To Illustrate the use of predicate ilodeNcmaexing the answer'libnry, let us consider the
P

,primitives for the Logo turtle wtrAd. Tie:turtitris a graphics. cursor on a. display that is moved

primarily by two commands-. FORWARD amend, RIGHT The former motes the turtk display_in
-..

... i .', .

.the diriction of its .current heading. The latter rotates the turtle around its own axis. Like any
/.'" . .

..

problem, the primitive FORWARD is,descrked in the answer library by a Post Mod#1 that
11

indicates its effects; i.e., ,what it can be used for, and a Pre model that itateseits prerequisites.

Pre Modeller (FORWARD X)
. -

To execute (FORWARD X), two objetts must exist: a turtle find a display.
Theie two objects must satisfy the relationhap that At new position for the turtle
(as specipe&-1, the Post Model) lit with tAft Itoundeirie-le the display.

(EXISTS TURTLE,

(EXISTS DISPLAY)

1(XCOR (FORWARD X)),$ )(max)

Jc 11YCOR WORWARD Ympx) vP

Post Model fir. iFORW A X)
4P

The !emit of executing ( FORWARD X) is that there exists a vector with length
X, whose direction is the previous Afadatile the turtle and whose visibility is the
previous state of the pen. (Dots (r) are used to indicate the previous value.)

-(4 (LENGTH V)'X)
I. .

*I. (XCOR TURTLE) , 1.

(EXISTS VECTOR V)

4 (+ t(XCOR TURTLE) 1* X (CDS f:(HEADING TURTLE)))))

I. (YCOR TURTLE)

(+ s(YCOR TURTLE) 1* X. ISIWOHEADING TORTLE)))))

1 (HEADING V) :(HEADING TURTLE))
(i. tVISIBILITY V) s(VISIBILITY TURTLE))

Problems Are represented slitillarly. Figure 5, a awishingwell picture: is a typical scene that a

Logo student might attempt to accomplish by manipulating' the turtle. This kind of project is

commonly undertaken by beginners after two to five Hours of experience with the computer

1C



*4

Structuied Planning and Debugging 15 A Goldstein E. 141 ller

I

'

/

FIGURE 5. '

WISHING/ELL PICTURE
AN ELEMENTARY LOGO GRAPHICS PROJECT

I.
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-

(G. Goldstein 1973, p. 231 An English ;statement of the problem might be draw a wiAingwell'olith
I19

square welt and a triangular roof To Bow formal treatment of this problem, we use a predicate

desired(Post) model of the desired picture as input to PATN. The model is expressed in a simple

'assertion( formalism developed by Goldstein 097419

.4.

MODEL 1.11941 r

'1 PARTS ROOF E WELL 11}

2 TRIANGLE 3 LK PECE:''f,4 SQUARE 'ELL

5. ABOVE 'II POLE: 6 ABOVE POLE WELL/ ,

7, CONNECTED WELL POLE (AT Pt

8 ( P`MIDOLE (UPPER (S (OE WELL)) ) )-

9 P (LO(,ER (ENDPOINT POLE)))

AB CONNECTED POLE ROOF 1AT 0)

. 4 ( 0 (MIDDLE (BOTTOM iilLIE ROOF)) )

(12 (. 0 (UPPE'll (ENDPOINT foCop
13 \ HORI ZONTAL (BOTTOM (SIDE -ROOF))

14 \liORIZONTAL (UPPER, (SIDE le,L)

END'

' Later we attempt to show that t eparticular hoke of model Is not critical: PATH has been

designed to utilize s variety of heuristics for reform/fisting the model if necessary.°

k instruction to the ask -armed robot is ( PUTON A B) , AFOr the blocks world,

sand B blocks. The Pre Model
A.(

To execute (PUTON A -15), 'Aliiiust have a clear top, In order to be
picked up. A must be at some known old.position. Also, the top
of B must have enough room for A.

ICIINIT(1P A)

'.(ON A OLD - POSITION)

(SPACE-FOR A 8).

The Prilt Model asserts:
.

Block A is .vo longei%on its old position. is on B. Also, the
top of B is not clear.

(NOT (ON A OLD-POSITION))
4- (ON A8)

(NOT (CLEARTOP B))

. ik
4

Is
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For basic blocks world problems, the model is simply a conjunction of QN retationshipsi For

example, a tower of three blocks would have the model:

(AND (ON A 8) (ON El C)).

2.4. Problem Decomposition

Divide each ptoblem that you examine iriko as many parts asyou can arrl as you

A
need to solve them mot!' easily.

Descartes, OEuvres (vol. VI), p. 183 "Discours de Is Method." (Part 11).

This rule of Descartes is of little use as long. as the art of dividing ... remains

unexplained By dividing his problem into unsuitable parts. the unexperienced
prof:HON-solver may increase his diffidulty.

Leibnitz, "Philosphische Schriften," edited by Gerhardt, vol. IV, p. 3.31.%

From [Polya 1965, p. 1.291

Our theory of planning addresses Leibnitz' criticism of Descartes, by developing more

precisely. the nature-of decompositiou niques. The planning taxonomy identifies two important
. ,

methods: confileirtion and 4fretirion. The first type of plan is appropriate for achieving a goal

which is described as a simple conjunction of predicates (such as the three-high'Tower above).

the second plan type is appropriate for tch ving a go;ri-which is described-as 4 particular
(

subgoal repeated some number of times (such as a Tower of arbitrary height), In conventional

iprogrammihoenjuages these plan types are zmplen1nted using sequencing and iteration (or

recursion), although ether language constructs are possible (such as parallelism).

PATN's decision to pursue CONJUNCTION versus REPETITION is based on the form

the model. For our purposes here,/ given sub-model is restricted to being eitherexpiirlf or generic.
k

The former has an explkit list of parts. WishingAll is an example of such a model The latter

uses quantificatlen to describe the overall model in terms of a;'generic- part. EQUITRII and

EQ,UltRI2 given*elow are two equivalent models for an equilateral triangle The fit.st is explicit

while the second is generic.



' ,
Structured Planning and Debugging

,

MODEL EQUITRIf'
1 PARTS S1.$2 S3 Rl.R2 R3

. 2 LINE Si; LWE Sts LINE 63 's\
3'ANGLE RI,' ANGLE R2, ANGLE It
4 Si. 62 S3
SRI Ri R3

6 CONNECTED SI` 52
7 'CONPECTED S2*S3,
8 CONNECTED S3 Si
ENO

I

MODEL EOLITRI2
1 PARTS IS 3) (R 3)
2 FOR-EACH 1, LINE SID
3 FOR-EACH I, ANGLE R(1)

'4 FOR-EACH 1. 1.1.3,

S111 S(1+1 MOO 3)

5 FOR-EACH I, R(1) 128

6 FOR-EACH I,

- CONNECTED S41) St1+1 1100 3)

END
4

Goldstein & Miller

Because of the simplificaiions we have introduted, generic models can br trivially

distintuished from explicit tnIdels by 'the presence of the quantifier 'FOIL- EACH)' In the general

case, models could be arbitrary logical expressions with mixed existential and universal

quantif icition. The 'elementary blocks world tasks and Logo picture problems which we are

considering-de not require this complexity. (A dirction for future research is to extend .PATN's

design to handle these more complex \problem`descriptiont)

The ATN representation for this decision is illustrated byfigure
(

6. Examine. the

DECOMPOSE node. The transition to CONJUNCTION is made only if the problem is

described by a model with explicit parts such as EQUITRII or WISHINGWELL. It the model is
% /

constructed from a grerk description at in EQUItRI2, then REPETITION is selected. Thus,'In
i...

.

terms of arc pre:Pates, the akernatives at the D cohiposE node arelnutuallytirclusive. It is. . . , ..
,

Possible that a REPE1ITION plan, for example, might eventually be produced for s 'problern

initially described by ait1ezpikit model. However, this would occur only through an intermediate

REFORMULATION which EQUIVALENCE converted the original model to generic form.

This in Kim would allow a recursive call,to PATN in which DECOMPOSITION would then

choose REPEXITION.

1-`

r

4

-7'
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EXPLICIT (M)

b

DECOMPOSE

GENERIC (M)

4,

CONJ.JNC!ION

C

REPETITION

\.t. FIGURE 6
PAT'N' s DECOMPOSE NODE_

21 r
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p.5. Decomposition by Conjunction

For conjunctive 'plans, PATN's next design declgoolevehether the conjuncts are to be treated

ently, or, alternatively, whether notice must be taken of interactions. For example, a linear

fir the wishingwell of figure 5 would salve for the three sub-pictures ROOF, POLE and

WELL as sepirate subprocedures, each constructed independently of the others., A nonlinear

plan might attempt to take account of the potential interactions between POLE and the other parts

modifying the specifications for ROOF and WELL so as to start and stop in the middle of a

side facilitating connection with The POLE. However, sinceiuch an optimization repines that a

given subprocedure incorporate kOowledge regarding the implementation of mother subprocedure,

a linear plan would not do this. E.

Let us be more precise in our claudication of nonlinearities. The goal is to Construct a

procedure to accomplish a conjunction of assertions. NOlgiRtafiliff in decompositien are those that

add constrynts to the design of the subprocedures. Nonlinsarities in coat position (i.e., in putting

the parts back together) are those that add consuhints to the design of the superprocedure.

For the wIshingwell example, adding the constraint to the design of the subprocedures tor the

"ROOF and WELL ;hit they start in the middle of a side is an example o& nonlinear

deasmpositiori.' Another example for the Logo world which involvei more than optimization d

occurs for problems which specify that one *Jed, X, is to be INSIDE another, Y. Y must be taller

than ifthe required topological relation is to hold. This means that al linear decomposition that

ignores the INSIDE relation and draws Y to some default size is likely to fail. The correct
11/4

approach is to add a SIDE property to the descriptions of both X and Y,

A nonlinear composition adds constraints to the design of the superprocedure. For the 'blocks

world, the lisost common form of this nonlinearity is the existence of. a partial ordeling. on the,. ..-
t sectienallt which the subpals should be achieved. The ordering constraints arise from thf use of

some temporary sesource (such ai space), by one subgoal, which-is-eventOally used in a conflicting

22
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way by another. An example discussed by Sussman [1973] and Sacerdoti (1975] is'the construction

of a tower of three blocks, i.e., (ANO (ON A B) (ON B The ewer must be built from the

bottom up if the subgoals are not to conflict. The constraint (BEFORE (ON Cl (ON A B)) must

be added to the /design of the superprocedure.

The, same kind of nonlinearity can arise in - Logo animation. To create a "snapshot" of some

plctuIi:e which can be-clisplayed,anwhere oq the screen, the picture must first be drawn and

"photographed." This process, called "snapping: involves first drawing the picturtr, next snapping

lt, and then 'erasing it. Now the erasure is of an entire screen region. If another shape is present It

will be destroyed. Hence, no shapes intended to appear in the final scene should be present. Thus,

a constraint must be asserted that requires that the snapping subgoal be achieved before airy

subgoals-Wilirraw a permanent shape in the critical screen region.

Nonlinear decorn ition composition constraints are not".mut exclusive. A given

problem can exhibit both kinds of interactions. In the next sub-section, we take a' ount of t4 by

Including a cycle In the ATN that progressively linearizes each interaction detected in the model.

2.6. PAIN'. Subtraph for Conjunction

Figure 7 shows PATN's subgraph for cAunctIon. Arc b from CON JUNCTION to

LINEAR decomposes the model into sub-models that will be solved for independently by recursive

calls to PATN. This is done ar fbllows. Two classes of sub-models are created. One Class

describe9 the individual objects. The second class describes interactions.between pairs of objects.;
For each object Xi in the model M, Mi is the tub-model composed of all the

9 assertions in ,M, describing properties of Xi.

For each pair of objects Xi and X j in the model M, Mi,j is the sub-model
composed of all the assertions den` itring relations between Xi and X j.

, We speak of accomplishing ihe object XP described by Mi as a pain step in the overall-procedure.

Relations between two obrctidescribed by Mij are accomplished by.interfaie stets.'
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As an example, a linear decomposition of the wishingwell is:

TRIANGLE ROOF;

HORIZONTAL' (BOTTOM. (SLOE ROOF))

Ms LINE POLE:

1'13t SQUARE WELL;

HORIZONTAL (UPPER (SIDE.WELL))

111,22 ABOVE ROOF POLE:,

CTED POLE ROOF CAT (D.

(MIDDLE (BOTTOM (SIDE-ROOM))
.'0 UPPER (ENDPOINT POLO)).

I

f12,3t ABOVE PILE WELL

CONNECTEQr bIELL POLE (AT Pl

I. P. (MIDDLE (UPPER (SIDE WELL) )

P (LOWER (ENDPOINT POLE)) ).

t--

4
We define linear sequential refinement as solution by the following process:

(I) organize the inainsteps into a sequential procedure, choosing an orderaig that satisfies any
linearization advice;

Goldstein & Miyer

(2) solve for the mainsteps independently;

(S) solve for the interfaces in the odder in which they occur In the procedur

A linear decomposition is valid if a corresponding solution via linear sequential refinement is

pi:risible. Implicit interactions can invalidate a linear decomposition.

The linearization cycle consists of arcs c,fs and arcs dg. These arcs attempt to linearize the

model by checking for known types of interactions. The nonlinear decomposition node adds

properties to the descriptions a individual subgoals that take account of interactions. The

nonlinear composition node sets an advice fekister that' will be accessed by the SEQoperator

(explained below) in constructing the superprocedure.

NLD is a con junction 'of conditions (predicates). each Of whrichehe s the model for a

particular relation or pattern of relations that have nonlinear consequences for e decomposition.

2C
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If anj..ot theseredicatis detect their iind of interaction, properties added to the description of
9 si

Individuil objects tbat*plkitlyliccount for the dependency. The objective is that with these
-'i % °

addltionil propertiestin independent treatment of the modified object :specifications will be

successful.it . 4 .
% .

For example, as discussed above, INSIDE'is a relation in the turtle world that has
J

it !,
) k .

consequences for the properties of the objects involved. Thus, NLD-INSIDE checks for the

existente of (INSIOE X Y) in tilemodel. If found, SIZE propertieidescribing X in terms of V.

or Y 'in terms of .X, or both, are added to the properties of they objects. The restsik is that an

independent soitiion for (th; revised versions of), X and Y wifrnat prevent tits INSIDE relation

from being accomplished.

NLC checks for patterns in he model Cat have consequences for the eventual codirositioxi

the steNtials. If such properties are detect then explicit relations.arelcjcled to take, account, of

the interactions. 'An exampleli, NLC-ANDAAt IPN that checks for aLop animation that create

snapshots and shows them. If detected, (BERME SNAP DISPLAY) is appended to the contents of

the ADVICE register. Similarly, fof the blocks world, !MC-TOWER adds (BEFORE (ON B C)
4

40

(ON A -13)) to ADVICE. 4'

Tht ;)lid NLD constraints arise fromovsources. The first is that they may Oe

;Supplied by the creator of the Planning AIN. Alternatively, following Sussman PATN can

be desi ned to summarize bugs by clauifyingthe nature of the minlinearity and adding it to the

NLC a d NL6Constraints. In these terms: the Acquisition of to (a;Teast partly, the growth cit.

moreelaborate recognition routines for implicit interactions. tusiMan called this process the

compilations critics. The t cal advance Of Stnictured Planning ova Sussman's HACKERc14 . a

. paradigm is to lee clear that t tks are simply additional arc constraint n the planning
, - . -

transition &kph. hey are nos-different in kind from any other planning constraints.
...-,_-

. 4

To summarizet-'implicit dependencies are handled by ihe ATN's linearization loop. If the
a

s-

4
1

111
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problem is identified as involving some kind of nonlinearity, then the model or adOegisters ase

modified to make the interaction explicit. Processing then returns to the CON JUNCTION node.

Further processing of interactions &cum until no more are detected. Control then passes to the IP

LINEAR node for actual dEcomOosition. If in interact* still exists, but has gone undetected,

subsequent debugging wilt be necessary.

72. Composition by Sequential 'Refinement

Once the nonlinearity loop has been completed, PATN wou ld go on to solve the individual

subgoals and compose a cornplae solution. In this section, we clikuss a composition technique we

term sequential refinement. -A generalization of this approach, net refinement, based on the
.44

procedural net representation for programs;isscussed in section three.

Figure 8 illuitrates the ATN subgraph for the sequential refinement cycle. The basic process

is cycling through the subgoals identified by ,the linear decomposition and solving for each by

'recursive application of the ATN. Arc b enters the sequential refinement loop. The ,solution

register S is set to a:sequential superprocedure for the.mainsteps Mi and interface steps MiJ..

ideritif ied l y the decomposition. The SEQ. operator on the arc chooses an order for this
11

superprocedure thatpit:consistent with any ADVICE recorded by the linearization loop. SEQ.,

Might also bring additional criteria to bear on the organization of the superprocedure, such as
41

imposing an order that mirrors chains of predicates, in the model, such as X connected to'Y

connected to Z.-This often simplifies interfacing.

As an example, for the wishingwell problem, given the Mi and MiJ specified above, a

plausible sequence of mainsteps would be:

'1

. TO 144

18 ROOF

2e POLE
38 WELL

END

A

4

28
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a
LINEAR

S *.SyQ{mi,mij}

..101/11."

SEQ
Goals+ ORDER+{Mi,Mij} S

b

G 4- Frrst Goals
46.

Goals 1- Rest Goals

SEQ(G) 4- pLAN(m.4- G)

Goals = Nil d

POP S

FIGURE 8
SEQUENTIAL REFINEMENT

4

"Th
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. 4

The ORDER operator on arg b 6f figure 8 chooses the sequence in which the sub-problems
b do)

are solved. This may not be, indeed, probably is not, kien to the order of occurrence of the
.

sub-problems in S. A criterion for the order of solution, for example, is to solvefor the mainsteps

before the interfaces. Another criterion is to order the mainsteps with respect to their complexity.

Looktihad (sectioh,three) can estimate this. Fir the wishingwell, it makes sense to solve for the

POLE first since lookahead can' identify this is a primitive. Criteria for ordering the relations
\ _

can exist as well, although the default ordering is usually the order of occurrence in the procedure.

Arc c i0a cycle that recursively solves for the.subgoals in the order selected 1.-.y ORDER. The

solution for each subgbal is attache to S at that subgoalls node. The solved subgoal is then

deleted from GOALS. When all subgoals have been solved, the cycle is exitei via arc d. The
OW

, ATN pops, retutinng the solution.
- ,-

For increased effectiveness, PATN's initial Logo world answer library would contain both

primitives with their associated models as well. as schemata for accomplishing particular model

relation. Thus, if the sub-problem is too hieve (ABOVE X V), where X and Y are mainsteps

that have already been solyed, then the answer libriry would contain specific procedural

knowledge for designing an interface, relative to the adjacent mainsteps, that satisfies that

relationship. The nature of these imperative schemata is discussed in (Goldstein 1974, Appendix

M. We do not give details here.

For the wishingwell, the mainsteps for the ROOF, POLE and WELL would be solved first.

Then, pursuing the defauk order for relations, first the interface between ROOF and POLE and

then between POLEand WELL would be constructed. Figure 9 shows PATN's solution (as hand -

simulited by the authors) and the sequence of ATN states involved in its generation.

Besides generating the program, PAIN would generate its annotation, an hierarchical trace of

the ATN states passed through in generation. In this derivation tree, each node has a copy of the
.,

values assigned to the registers at the time the-node was generated. This serves as a description of

19
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-CONJUNCTION

LINEAR

(-CSEO*

Goldstein & Mier

+POP (S)

WHERE S IS:

TO set

10 M 4- TR/ 4- ROOF

20 W1:2, BELOW, CONNECTED

30 M
2

4- LINE 4- POLE

40 M
2,3 BELOW, CONNECTED

50 M
3

4- SO WELL

FIGURE 9.

SOLVING THE NISHINGWELL
,

I

A
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the purposes of the code in the form of the MODEL assignmentst ADVICE for future
b

,modifications and CAVEATS regarding possible buts. Caveats are generated by the plannei

when making possibly erroneous heuristic decisions; these are discussed lo a later section on
,

*debugging. The derivation tree for the wishingwell procedure (abbreviated slightly) is illuitrated
f

in figure 10.

2.& Decrepoettion by Repetition

Before concluding this section, we briefly 'consider other planning t hniques which were

illustrated in our taxonomy but hav4'not been elaborated in the discussion so iar. Repetition plans"

correspond to the problem solving method of structuring the solution in terms of either the same

goal applied to simpler argumenti (recursive plans) or another simelet goal repeated some number

of times (round plans). The former technique is more, powerful than the latter in the sense that

every round plan can be accomplished by means of a recursion, while every recursion cannot be.

accomplished by iteration (Hewitt 19721 But Rounciplans are differentiated because the problem

formulation which would trigger them for PAIN differs from that of Recursive plans. In the

former case, the problem P As described as n repetitions of problem_ Q, where Qp, while in the

'litter P is described in terms of ,repeated occurrences of problem QP.

Round plans are the natural planning technique for generic models. We intend to handle this

)

in the ATN via an arc.operator ROUND that formulates a sub-model for the generlc part and

advice for the composition requesting an iterative control structure. Having decoMposed the

problem in this fashion, control wouldthen pass to the Sequential Refineinent Loop. Figure!!

illustrates this subgraph.

EQUITRI2 was an example of a generic model. The ROUND opejator wpuSd isolate

subgoals for accomplishing a SIDE and a ROTATION. The repetition advice would be for three

iterations. The result Id be a program of the following 'form:

les

ti
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FIGURE 10

se+

ABBREVIATED HIERARCHICAL DERIVATION TREE FOR WISHINGWELL

3

4USE CODE
,MAINSTEP EFINED

GETFILE

RIGHT 90

SQUARE 100.

-GET SQ.FILE

HINTERFACE (BETWEEV WELL

,MAINSTEP....:7191: 50
1

CLEANUP...-- ..i

SOLVEPLANDECINSEQ-1,

1

AP

MAINSTEP APOLE)1..4
/
PRIMITIVE FORWARD lot

1

/

I

. ETUP... LEFT 904

irINTERFACE (BETWEEN POLE &tA00F)...DEC...LIN INSTEP.... 410RWARD .50
, , .

,

".MAINSTEP (ROOF)... DEFINED...

3

LEANUP... RIGHT 120

L.

a

TRIANGLE 100
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.TO TRI
lirREPEiT 3 20,
20 FORWARD 1011

39. RIGHT 120
END

3I
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2.1 Problem Reformulation

When a pioblem arises, we should be a le f °t) see soon whether it will be
profitable to examine some other problems fir and which others, and in which
order.,

Descartes, OEuvres (vol. X), p. 381. Rules for the Direction of the
Mind' (Rule VI), from (PolYo 1385,1x 3

The final category of plans whith we conside nsists of techniques for problem

reformulalion.II The impoitance of these methods can be understood by recognizing that all of the

problem solving 'strategies mentioned above are triggered by pattern matching against the
k

description of the problem. The reformulation techniques, however, are designed to alter the

problem description: PAIN would apply these reformulation techniques should solution by

identification or domposition fail. T action Is to 'reformulate the proble escription, and

then to pass the new description back.to the Planner.

Our taxonomy includes two reformulation techniques.12 The first attempts to find an

quire/me-problem that will be easier to solve, and whose solution will satisfy the originayfik.

The second searches for a /imp/filiation that can belt:ecru a stepping stone to solving the original

problem:

The difficulty in applying reformulation plans lies in recognizing which reformulation will

aid the solution progress. For equivalency. we. envision PATN as capable of reformulAtions that

move between descriptions given in ,terms of multiple objects-R1 equivalent descriptions in terms lof

a single generic object, thus changing from a Conjunctive decomposition to a Repetitive

decomposition, or vice versa. An example is moving between the EQUITRII and EQUITRI2

triangle models. Another reformulation technique involves regrouping the parts. Figure 12 shows

37
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tree

well

roof

pole

FIGURE 12
10 REFORMULATING THE WISHINGWELL IN .TERMS OF A TREE

C
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.

an example of parts regrouping for the wishingwell. The virtue of regrouping is that it might

produce a model whose parts are already in the answer library.

For Simplification plans, we have analyzed elementary techniques based on generalization,

specialization, and analogy. (a) Specialization typically involves instantiating variables In a model

by specific constants or restricting their range (b) Generalization would include the opposite

proceises. Other non-equivalent reformulations involve adding or deleting model predicates. (c)

Analogy often amounts to first generalizing and then specializing. Thus, for the Logo world, if,

the original modd4 were for a-tfrangle with sides of a certain site, genertlization might ,produce 4

model for a polygon, or for a triangle' of arbitrary site. Analbgy might then respecialtte to a

square, perhaps, or...a-triangle of another size. The virtue of these reformulation techniques is the

possibility for reaching a problem-descriptiun whose solution is known. We envision that each

technique would have associated with it an inverse mapping on the solution so that It can be

mapped back to suggest a plan for solving the original problem.

3 f)
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3. aearehing for the Plan

If you see several plans, none. of them too sure,. if there are several roads
diverging from the point where you are, explore .a bit cd,each rood before you
venture too far along any one -- any one could lead you to a

Po Iya, Mathematical Discovery, (vol. lb, p. 27.
., ,:.

....-**., -. .

The most Straightforward plan generation algorithm' for PATN is to attempt arc transitions

- in depth first, order, with alternatives stored on a backup list: If some plan leads to a subgoal that ..

ti 4.

cannot be solved,' failure occurs. GOntrol backs up to the more recent choice point, and planning
fr

resumes by pursuing the next-Ontried alternative for that choice point (provided that it is allowed

by any arc transition constraints which may be present). 41

'' This depth first search would apply to both explicit and implicit choice points in planning.

An example of an explicit choice is.the decision between decomposition and reformulation for a, -given problem. By implicit c'hoict point, we mean those decisions which arise which are not

represented as mutually exclusive arc transitions ATN. Implicit choices occur in identifying

past solution (more than one previously solved problem may match the Post model for the current
. .

problem); creating super-procedures (there may be more than one reasonable sequence} and. In

general, whenever knowledge on the transition arcs sets regisiet3nd makes decisions. We have

discussed, arc ordering and predicates associated with the transition arcs to irect explicit choices in
. .

the planning ATN. For each implicit decision, a similaripproach is possible. The decision

process locally determines the order of the alternatives, pursues the first, and pushes the remainder

onto a failure stack. Thus the overall planning process would remain a depth first search.

Ultimately, all plans which PATN .is capablk of generatinglould be tried in this mode. Of'

course, exhaustive backtracking search is not a practical planning technique. One way of '

..
decreasing aimless search which has been discussed is to provide additional constraints on the

transition arcs. This section outlines further techniques germane to resolving planning decisions.

. 40 2
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Ilk' .

These techniques operate by superimposing an executive search process on the ATN so as to

improve the efficiency of plan.generation. The techniques represent four milestones in 'the
. .

development of a successful planning-theory: These improvements, designed to make the planning

; process mor ect and less susceptible to blind search, are: (a) lookahead (e.g., (Aho

-...- ' Ullman -I972)); (b) least comnitetir (e.g., (Sacerdoti 1975)); (c) differential' diagnosis (e:g.,-

(Rubin 19751); anci.(4) lemma libraries (c f., lumps' Mikes et al. 19721 teell-forred subitring tables .

Iltuno 19671 (Woods et at 1972]). We intends to incorporate these strategies .into the bask PATN

. problem solver, folknvIng its initial implementation.

0$tOokaheed

Lookihead consists of a limited search of available Alternatives, with associated static.

plausibility 'criteria for judging the probable success' of given non-terminal state. An elementary

biti''llsecul form of lookahead Vould be accomplished inaPATN by .Pushing the planning process

forward some fixed number of recursive levels, looking to see if_a solution arisesviaideetif kation.

Thus, a clecornposMthat"tan solve most of its subgoals in term s of the answer library. would be

prtePred to a decom at st recursively apply decomposition techniques to its subgoals.-
. .

\

In effect; such lookahead.attemPts to select those plans that accomplish the oal with a minimum

numbir of-Tecurtive calls to the problem solver.

Fot: example, teconsidei the wishingwell scenario. Suppose the answer library contains, m$-'a
s

do

TkIANGLE program, bu) a TREE procedure. Lookahead could prevent the planner from, blindly

- pursuing a decotnposition in terrrrs4f ROOF, POLE, and WELL:over a reformulation that'

describes the wishingwell as a. TREE and a WELL (figure 12). This woitki be accomplished by

observing that the. reformulation produces a .Pi-oblein *des-aloft .whose decommition can be

... _. - .
tip solved- by means of the answer library; Whereas the standard- d position results in two-,

,,

oals (theROOF and the' WELL) that require further analysis. le k

41
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Lookihead could be 1 plementect in the usual fashion (see, e.g., (Alto & Ullman 19721). A

-
11114tatic plausibility function mig t assign a plausibility of one to problems that can be solved via ..

.identificationYInd zero to problems that require decomposition or reformulation. Lookahead

would push the analysit through a fixed number of levels of recursion, and then estimate the

dynamic plausibility as the sum of the static plausibilities of the subgoals appearing as the tips of

the probltm tree, divided by the number of these stgoals. The division serves the purpose of

resolving the following situation: given two situations in which the same number of subgadare

known, the problem tree with fewer unsolved subgbils is to be preferred.

A 'refinement of this plausibility computation might assign greater weight to those plans that

led to identifications for more complex subgoals. The complexity of a subgoal could' be

approximated by syntactic criteria such as counting the n ber of predicates involved.t. S

3.2 Least Centelle tment

Least commitment is the problem 'solving- technique of avoiding prematu re decisions. It is

elegantly develop$ by Sacerdoti (1975] in the form of procedural nets. Sacerdoti observes that

some bugs in planning can arise 'from prematilieCommitment to a particular sequence, when the

available evidence does not in fact require such a determination. His solution is to represent the

program, not in the usual sequential format, but as a net.13

Figure-IS illustrates a procedural net for buildi a 'tower from three blocks. Sacerdoti'stif

planning:system, NOAH, proceeds by successively expan tng subgoals, committing the system to a

sequelice only when a conflict in orderingarises. At levels 1:2 and 3, noorder has been chosen for

the sequence ccomplishing (ON A a) and MN B C). It is not until after criticism -at level

that NOAH its itself to an order -for placing the blocks.

This technique could be incorporated into PATN by replacing the sequential refinement loop

With a net refinement cycle (figure 14).. Instead of SEQ organizing the subgoals into a sequential

, en

4')
I.

*

4
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LEVEL 2
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Achieve (AND(ON A BlION B CI)

dimmemorMa

LEVEL 3
Criticism)'

(a)

Achieve ION A B)

Achieve B C)

(b)

Amiew

/A-740622-14

Ic)
T A - 740622- 13

e (d)
TA- 740522 -16

FI(,Uak; 13
SUCCESSIVE REFINEMENT OF A PROCEDURAL NET FOR BUILDING A TOWER

$ FROM ISACERDOTI, 1975, P.._15)
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5 procedure, NET would organize the subgoals into a procedural net. This leads, to a generalization

of Sacerdoti's apptoach. We would represent ire' the net, ..ot.only the main subgoals as akernative

40 Goldstein & Miller

branches unless ordering is required, but also

the general form for such a "Structured Plan Wet.'

dons between these goals. Figure 15 shows

PAM would solve for each subgoal, fo ving the procedural net technique of node

expansion. But eventualli the planner would also solve for the relations. When all subgoab, both

to cbnstruct individual objects, and to satisfy their *bons, were satisfied, the resuk would be an J~

executable net. Any remaining b;anching could be executed in arbitrary order. Figyre 14

illustrates this process. The operxtor NET on a(c b sets the solution variable S, not to a

superprocedure, but to a net of th given in figure 15. GOALS is the set of subgoals,

ordered for planning attention in the same fashion as for siqUential refinem ent.

Art c recursively all the platter to solve for a subgoal. If the subgoal is a mainstep, it is

spliced into the net as a refinement. But if the subgoal is a set of relations, then its solution may

involve establishing. a specifii interface. If so, a sequence is enforcel on the rnainsteps ad jaient to

this interface. The effect would be that, in figure 16, A is transformed to figure B. If there are no

relations between two mainsteps that require interfacing, then no additional ordering will be

imposed and the net will preserve its, branching. The ?emit would be executable undei the

interpretation that parallel branches may be executed in any order. If there are a great many

relations, then the net will ukirna. tely reach its most constrained form a sequence.

Following Sacerdoti, Ayc d would criticize the procedural net, checking for interactions that

be me apparent only after expansion. A typical example is noticing that the prerequisites of one

r1-1bgoa are 'clobbering' a brother subgoal. For the blocks world, this involves observing, by

means of a table of tulaple effects (Sacerdoti 1975, p. g09], that the prerequisites of one goal are
it

tlearing a block that was placed by another goal. We shall not go into detail regarding these

&Ma. 'T/he interested reader should consts It (Sacerdoti MU However, it is worth noting that if
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the original linearization pas completely successful, criticism should find no hidden interactions.

Goldstein & Miller

But leD probably a useful heuristic check on the linearization cycle to include this criticism process.

There arisubtleties in handling relations between non-adjacent mainsteps. For su

relation such as R(XI,X3) might have to be replaced by an equivaleill description in terms of

objects accomplished by adjacent mainsteps, say (AND Iti(Xl, X2) R7(X2,X3)). We shall not

discuss this further here. Our purpose here is only to indicate the, direction our research would

take in linking the ATN representation for planning concepts to Sacerdoti's procedural net

representation for programs.

PATN's design represents an extension of NOAH, Sacerdoti's program for refining

procedural nets, in that NOAH's primary planning technique is successive goal expansion. This

corresponds to-PATN's deaariposition-by-conjunction. But PATN also represents a variety of

other planning strategies, including repetition and the major category of reformulation. NOAH

improves the representation of the procedures produced (by using nets), but does not emphasize

PATN's central concern at hew this goal structure is arrived at. Hence NOAH makes an

important oontribution, for the fashion in which It captures the principle of least c;mmitint4t: but

it is not a total theory of program composition.

3.3. Difforontial Diagnosis

Differential diagnosis refers to a collection of strateties which gather specialized selection

'-
knowledge at crucial choice points. Critics beloni in this category. Critics analyze the problem

description, and advise PATN as to which transitions are permissible and which are prohibited. A

Block's World example is'HACKER's critic (which.could be attached to PATN's

CONJUNCTION node), that diagnoses (AND (ON X VI (ON Y 21) problems as involving non-

linear relations between the subgoals.

49
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ai,11. tonne Libraries
- .

Goldstein n & Miller
7

Whenever a sub - problem is successfully solved, it can be added to the answer library, even if

the overall approach falls." This allows the

the same mbgoals. Strips (Pikes et -aL 1972)
v. .

economies.
\

This planning technique is analog

Wive' to avoid, repeated attempt? to solve
Ar

sumps and trUnsfe_ tables to achieve similar

s to the use of well-formed substring tables

.
(Kuno 1967; Woods it aL 1972) in applying ATM's to natural language parsing, including their

.geniralintion to charts, u utilised by Kay (1973] and Kaplan (19741 t

i

In the remainder of the paper, we consider the rational eels that can arise in PATN's

planning and how they can bediagnoand repaired-
-. ..

/

on

.06

,
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q
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45,./
4. Structured Debugging

oe:

Goldstein & Miller

filet us fodus on one particular component of (general heuristic knowledge): the
art and techniques of ... debugging. The school experience is dominated by the
normative attitude implied, by "right answer vs. wrong answer". The
mathematician's experience of matherliatics is dominated by the purposeful-
Lonstnuctive attitude implied by the struggle to "make it work". He abandons an
idea not because it happened to go wrong, but because he has understood that it
is unfixable. Dwelling on what went wrong becomes a source of power rather
than e piece of masochism (as it would appear to most fifth graders in traditional

math classes).
Papert, The Uses of Technology to Enhance Education, p. 10

?

We agree with Papert in his assessment that debugging is an essential part of problem
e- -

solving. A powerful debugging system frees the planner from the necessity of always producing

entirely correct plans. Bugs arise from heuristic choices made in constructing the plan. From the

Structured Planning and Debugging standpoint, suchristics are embedded in the default

ordering of transition arcs In the absence of specific arc constraints, PATN would prefer linear to

non-linear plans, round repetitions to recursion. Such heuristics can leakd to bugs. But we also
4,

expect these heuristics to provide several significant advantages the planner, such as:

11111111111..

(a) allowing the ,planner to attempt new problem types with which it has hatrno
experience;

(b) often being successful (because the default choice happens to be correct);

(c) in those cases where an error arises, regarding thinature of the difficulty as a
specific diagnostic as to the locus of the incorrect decision and the alternative

choice required;

(d) should bsequeri Axwrience lead to bugs, abstracting the problem description,

ernbeddi In a critic at the point in the planning ATN where the incorrect

choice was made, and thereby preventing future occurrences of the same error.

We call the class of mistakes that arise from reasonable heuristic judgments made in planning

rational bugs. in this section, we show how this class of difficulties can be explained with

reference to the planning theory. We introduce strategies for Structured Debugging, i.e., techniques

J
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for diagndsis and repair of rational bugs, based on identifyint incorrect or incomplete plans. We

organize these strategies as a design for a Debugger for Annotated PRogrants (DAPR)15

For DAPR, debugging consists of diagnosis and repair. If we envision repair knowledge

being associated with various (classes of error, then once the underlying Cause is identified,

correcting the program is straightforward. the critical problem is diagnosing the

underlying cause of the bug from its surface manifestation. We define a bug as being manifest if

the program produced by a plan fails to satisfy the problem specification or model. The model

consists of a Boolean combination of predicates over a setoobjects: unsatisfied iredicates are

termed violations (following Goldstein (19741). This definition subsurhei the special case in which a

program fails to run to completion due to an unsatisfied prerequisite of a primitive operation, since

operators have Pre and Post models.

In terms of the ATN planning theory, the underlying cause of a bug is eitin incomplete

plan, itt which a step is missing (e.g., the sequential refinement loop has failed to identify a

subgoal), or an inappropriate plan, in which an incorrect arc transition has been made. Underlying

causes can also be categorized as syntactic, semantic, or paginate, according to whether the

malfunctioning planning knowledge lies in the topology of the ATN, the semantic arc constraints,

or the pragmatic selection criteria (e.g., critics), respectively. (Foi-additional details on this aspect of

the bug taxonomy, the reader is referred' to (Miller & Goldstein 1976c1 in which these distinctions

eP
are made with respect to a context free grammar mirroring the topology of the ATN.) DAPR's

goal in diagnosis is to identify where in the planning process an incomplete or incorrect choice was

made.*

DAPR is designed to employ three diagnostic techniquel: model, process, and plan diaribsis.

Process diagnosis is the traditional kind of program analysis in which the programmer examines

the state of the process at the point where the error is noticed. Model diagnosis goes beyond

traditional programming environments and draws upon the formal specifications defining the

14,
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purpose of the program. Hence, it is a natural extension of work on verification: Plan diagnosis

is new. It is made possible by a derivation tree being associated with the program, which represents

the planning decisions made in creating the code. A diagnostic techniqtle we shall not discuss that

is useful in analyzing human code, but pot especially appropriate for progfams written by PATN,

is code diagnosis. This amounts to having a list of rational form criteria, and examining the code

to 'find if any are violated [Goldstein1'974, pp. 137 -1381. As currently designed, PATN's set of

planning techniques would not lead to this kind of mistake.

4.1. Model Diagnosis
41.

Model diagnosis is the basic diagnostic technique, in that it involves the determination of
a

whether the program has succeeded or failed in accomplishing its intended model. In logistic

terms, it amounts to a ierification in which the model predicates are aPplied to the structures -

pictures or block arrangements - produced by the program.17

The particular set of model predicates which are violated provides strong evidence regarding

whether the underlying cause is an incomplete plan: this is detirmined -by checkin: any code

was generated whose purpose is to accomplish those predicates or their pr uisites. if the pan is

incomplete, then repair can be invoking the planner -supply the -code. \A;

For eiample, suppose that after :Wm shin ell problem,' PAIN is asked to

generate code for a scene consisting of two wishingwells,,as shown in figure 17. This scene might

be specified by file following model:

\MODEL 14I-SCENE

1 PARTS Will 1412 I

2 WISHINGWELL WW1, 1442

3 RIGHT-OF 412 WW1

4 PARTLY-BELOW WW2 WWI

ENO

Both wishingwells would be accomplished by identification, that is, by calls to the existing

subprocedure. PAIN would initially generate a plan for this problem correspond 41g to the

au,
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FIGURE 17 - DEBUGGING A WISHINGWELL SCENE USING MODEL DIANCISIS.

Intended Picture Actual Picture

WW2 starts &re

Manifest Violations:

WW2 does not satisfy the wishingwell model, because the
bottom side of theiroof is not horizontal.

Cause of the Bug:

The plan is incomplete. There is a Missing-Prerequisite
for this runtime environment. Wishingwell incorre'ctly
assumes that turtle starts out facing north.

Repair Tepinique:

Use imperative knowledge of violated predicate (horizontal)
to-dompUte missing, initial rotation. 4A.

1
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'.1,

following codelos : 1
r .

.. * .
TO 0111-SCENE

29 PENUP .

V FORUALIO 1 fie :

8 PEN00101 .,.
.550 ,1114 r
ENO ,

Lines40#40, and:/cOnstitute an inface is accomplish model assertions land 4. This code ha`

., ,.

OUP

bug: the' second. shingwell does not =respond to the wishingwell model, because the RO
4s

not HORIZO Model diagnosis determines that, in fact, code exiits in WW io accomplish

.this,-propeity.,c.However, The plan_ for this code implicitly assumes that the turtle starts out facing

, i E...
.

NORTH. Ne code was generated to accoMplish this prerequisite,..einc,e in previous uses- of the
.

4. ,. .
: ) . ,- /11

$ procedure it happened. to ;Ways be spilled in the initial environment. Hence the under

...-- capatof the bug is incomplete panning arising from in unexpected runtime environment. The
, -Now

repair technique is to use. imperative knowledge associated with the.violaIed predicate to compute
. . .,

I , ,

S

the missiped -an knterface rotation step.
.

.1-
E01 T 114-SCE14E

45 LEFT 99
END,

0 / '
' . MOdel diagnosis can succeed in cases sisch as this, where some predkaetcan be found for

.

vshkh no code exists torccomplish it. Alternatively, if the plan indicates that code was created to

accomplish every applicable -predicate, then further diagnosis is necessary/ Perhaps there are

unexpeczjd interactions. lbulpcildiaggosis if. the next stage.18

e",

-

g
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4.2. Process Diagnosis z

Examining the state of the execution process, at the point where the buOecame manifest, is

often helpful in diagnosing unexpected interactions" This is the diagnostic technique used by

HACKER. Conflicts between, goals are diagnosedlas non-linearities and reflect the underlying bug
, .

Of 'haying applied an inappropriate (i.e.,-pragmatically incorrect) Plan. The essence is observing

that one goal has violas a model predicate describing the intended effects of a prior step. The

HACKER' bugs of' erequisite Clobbers Brother Goal, Strategy Clobbers Brother, and

Pterequinte.Conflicts with Brother are all of this type.

Sussman [19731 develops elaborate process state patterns for classifying kinds of interactions

which we shall not repeat here. The essence is observing that a model piedicate is being undone
I

within a during which it is'expectect to be true. For examine, consider the blocks 'world
4

problem of building a tower of three blocks: (AN (ON A B) (ON B C)). Part a *of figure is

(from [Sussman 19741 pp. 1041) 116 iagrims HACK E process state 04 buggy first attempt on this

problerniik Each box represents a stack frame, the horizontal axis represents time; the vertical axis

replignits depth of procedure calk. This diagram matches the pattern (part bof the figure) for
.

, the bui type. Prerequisite Clobbers Brother Goal. Once the difficulty is thus classified, repair

knowledge associated with that type of bug may be applied.

A predecessor of this diagnosis- technique can be found i7. the Pl-APIX capability of
, ;

the STRIPS problem slyer' Mikes 19721, In executing a plan, PLANER choked for model

predicates being accidentally undone. HACKER generalized this by checking for situations in
Ale

which previously satisfied predicates are *intentionally" undotie, i.e., where the plan itseleis flawed.

Process diagnosis can fail when the subgoal interaction is too complex for the debugger 19.

recognize. DAPR would next resort to plan diagnosis, a new debuggingliginique not previously

' formalized, to aid in isolating the culpable. design decision.

56 Ai
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FIGURE 18

Goldstein E,Miller

Debugging .(AND (ON A B) (ON B C)) Using Process Diagnosis

ti 4

10

4

a. Schematic Diagram of HACKER's Buggy Process

S

Step 1
Ste p1

b. The General Pattern for PCBG Bugii;
4P

5 rl

. (from. Sussman 1424, pp. 9-id)
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Plan diagnosis is based on the fact that the planner has available knowledge of various

heurlstk decisions it has madetich may prove unsuccessful Associated with each node of the

derivation tree for a PATN plan would be a specification of the values for a set of semantic

variables. The values of these,semantic variables correspond to "snapshots" of The contents of the

ATN's registers at the time that the node was generated. The CAVEATS variable is the

repository for advice regarding heuristic planning choices,,for use kr plan diagnosis.

,Were PATN to decompose a model linearly, for instance, without any actual proof that no

interactions existed, that fact would be recorded in the CAVEATS variable associated with the

appropriate node of th derivation tree. Of course, such a simplification may turn out to have .

been incorrect. Consider, as a specific e.sampk, the taskof drawing a face on the bails of the

following model.

` A FACE consists of two EYE:, a NOSE, a MOUTH, and a HEAD. (The two
eyes are called LEFT.EYE and RICHT.EY E.) The HEAD and EYES)) t be
CIRCLES. The NOSE must be an equilateral TRIANGLE. The MOU
be a LINE. The EYE'S, NOSE, and MOUTH must be inside the HEAD. The
EYES are to bebbove the NOSE. The MOUTH should be below the NOSE.

MODEL FACE

1 PATS LEFT.EYE RIGHT. EYE NOSE MOUTH HEAD

2 CIRCLE (HEAD LEFT.EYE RIGHT.EYE1

3 EOUITRI NOSE

4 LINE. MOUTH

5 INSIDE (LEFT.EYE RIGHT.EYE NOSE MOUTH) 'HEAD

6 ABOVE (LEFT.EYE RIGHT.EYE1 NOSE

. 7 BELOW MOUTH NOSE

END

In the absence,of specific critics (i.e., before PAT had learned of the peculiarities of INSIDE)

PATN would design the eyes and the had independently. But if the head and eyes are all.circles
1

of the same defauX We, then satisfying the relation that the eyes should, be inside the had will be

impossible. A linear plan that hives for the main steps independept of the relations leads to a

bug.
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DAPR would localize this difficulty using plan diagnosis. T he key step is n oticing the

existence of a caveat, stating that the linear treatment of the subgoals for EYES and HEAD was

justified, only on heuristic grounds. in the absence of other guidance; this signals a potential bug.

A closer investigation of the semantics of INSIDE would indicate a non-lin'earity with respect to

the size property, which would then be recognized as the source of the problem failure to observe

a relevant pragmatic arc constraint on exit from the CONJUNCTION node (due to prior

ignorance of 'that constraint).

PATN need not continues to make such mistakes in the future. Future'performance could be

improved by associating a critic with the conjunction plan node of the ATN. Thus, in subsequent

problems, if two parts were described by the INSIDE relation, non:linear planning would be

chosen immediately. In particular, the model would be modified to impose size properties on the

parts so that, in terms of the revised problem description, linear decomposition would then be

possible.

Caveats for use in plan diagninis would also be generated when heuristic) are employed

during problem reforinutation. The planner might construct what it.belieVes to be. an equivalent

11111.

problem statement, but not in faa rigorobily prove the equivalency For example, two problem
4

descriptions might be equivalent only over a subset of the possible inputs, but the planner might

postpone determination of whether -inputs outside of that range are ever possible or allowable.

Such an heuicistic apProith, though frequently successful, can cause,troubk. Hence, this too is

recorded' in the plan derivation and potentially noticed-during debugging by plan dialknosis. In
9,

the caSt of allegedly equivalent 'reformulation, the. CAVEATS variable associated with the

equivalent -ref or Ilion node of that derivation tree would cOriftin Oe warning that the

reformulation r upon heuristic assumptiont which were not rigorously demonstrated.

When such warnings are noticed during bug localization, DAPR's action would be to call

'Pon more thorough analytic techniques -- such as formal demonstration of equivalency to see If

II
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the heuristk assumption involved was in fact incorrect, thereby leading to an inappropriate plan.

Some critics could involve such costly processing of the problem spetification' that, even though

already learned from prior mounters, they might not be applied during initlal planning. If plan

diiignosis points to a possible error, these critics could subsequently be invoked.

4.4. Repair

APR's overall hyaii strategy for, buggy PATN plans, once the culpable decision has been
4.1

localized,, IS to undo the faulty choice and resume planning from that point. Selection of an

akernative arc transition would be facilitated by forocedunilknowledgeassociated with:

a. the violated predicate

b. the bog type;

c. the plan -type,

d. code caveats such is rational form criteria.

fib

J
Some of Phis knowledge is domain specific (primarily knowledge of repair techniques for ti de)

predicates: Goldstein (1974) character.ized knowledge of this kind for the Logo world.) The
--

remaining knowledge is of the sort suggested in the;dilcussions of the respective bug and plan

types. For example, one repair strategy for a fluky equivalence reformulation, which failed' to take

into account the full range of inputs, is to design a Conditional plan which separates the

equivalence-preserving and non-equivalence-preserying inputs, and then to supply a' separate

solution fin' the non-equivalent case as well.

R0

4,

1W
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4.5. Limitations of the ATN Theory of Buis

Ther$ are, of course, other kinds of bugs that arise in human programming that do not fall

under the heading of rational planning errors. These range from execution errors to the

construction of irrational plans. Execution bugs consist of those errors due to mistypings,

misspellings, incorrect programming language syntax, noise on the computer line, and other such

failures to successfully execute a'statement of code. They are often diagnosed by the conventional

computing environmtints, simply as a result of the code being unrecognizable. Repair is

accomplished by correcting, the side effects, if any, of the erroneous command, and then re-
.

eaecutingAn edited version of the line. The plan_is not affected. ...
--...-...-e .. .

11,
f -

Irrational-plans can be precisely defined with' respect to PATN. They correspond to making

transitions that are not allowed in the planning network or failing to make' transitions that are

It.

-- reit ju red. An example would 6e pursuing a repetition plan and failing to handle the terminal

cases. P TN, as a theory of rational planning, does not explain these kinds of errors, and we shall

,

not di ss them further here. (However, some potential implications of this distinction for

structured programming are touched upon in the concluding section.)

Another source of dissatisfaction with programs (which we mention for completeness but,d6

not pursue) arises from efficiency considerations. The Planning ATN is not a compiler and does

not attempt to optimize the programs which are produced. As outlined heit, DAPR would be

restricted to abrrecting programs that fail-to achieve their specifications. Programs that are far

from optimal, but are nevertheless successful in terms of their models, are correct with respect to

rational bugs. Howevefi an interesting question for future research is to explore the extent to

which PAIN-like hierarchical annotation could provide guidance to an optimizing compiler.

In the next section, we elaborate the Structured Debugging approach to categorizing,

diagnosing, and repairing rational errors, by analyzing the debugging behavior of HACKER,

Sussman's (1973) blocks world problem solver.,
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5. Reconceptualizing.MCKER

the current bug classifier in HACKER is an ad hoc program and thus, the body
of knowledge (celled Types of Bugs in the overview flowchart) on which it
operates is difficult to separate out and display. This, of course, makes Types of
Bugs also very difficult to extend. The hope is, however, that Types of Bugs is
essentially independent of the problem domain and need only be expanded when
new problem solving methods (the Programming Techniques Library) are
introduced. 1An important area for development of HACKER -tike problem solving

methods would be the systematization of the -knowledge' in Types of Bugs in el
more modular way.

Sussman, A Computational Model of Skill Acquisition, pp. 103 -104 4

Sussman's HACKER program represents a landmark in Al theory for its emphasis on

debugging as an important constituent of learning. However, HACKER. is theoretically

irscbmplete, in that it fails to integrate debugging expertise with a theory of plans. The underlying

bug types in HACKER appear as a miscellany of debugging knowledge with no underljing

regularity. The classification algorithm that maps manifestations to causes is ad hoc.

We shall extend the HACKER paradigm by developing debugging knowledge in the context

of a coherent theory of planning Front this vantage point, the underlying causes of bugs are seen

as specifk errors in plan synthesis. The types of causes follow straightforwardly from the possible

failings in traversing an ATN: failing to make an arc transition (incomplete plans), or making an

incorrect arc transition (inappropriate plans). For example, failure to generate code to achieve the

prerequisite conditions for a primitive constitutes a stmantkally Intootfriett plan.

In this section, we analyze HACKER from the,PATN standpoint. The purpose is to

demonstrate how PATN provides:

(I) greater,theoretical cldrity, by means of a unified planning and debugging
theory;

(2) greater depth and breadth, by means of natural extensions to HACKER'S set of
bug types and debuggiR techniques

There are our bug types in HACKER: prerequisite Missing, Prerequisite Clobbers Brother

2
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Gook Prerequisite Coriflicts'Ivith Brother, and Strategy Clobbers BrothirWe analyze. each in

turn.

5.1. Bugs Arising from Incomplete Plans

The HACKER bug type, "Prerequisite Musing," is a special case of incomplete planning.

This bug commonly arises in situations wherein the accomplishment"of a model predicate depends

clinically. on the particular environment in which the procedure is executed. Sour failure to

generate code to satisfy a prerequisite (becauie it will happen to be true already in the expected

initial, envirrinment) will be recognized as such during planning, and recorded as a caveat. The

issue of dependency on the initial state was discUssed In [Goldstein 1974, pp 85-88] in which

ASSUMPTI6iiiilirrynentarf was used to record known dependencies between the prpgram and its

initial environment. For the blocks world, Sacerdote (1975) used what he termed phantom nodes to

represent goals which happen to be true in the initial state, but which would otherwise need to be

accomplished.

'.--\A rational planner may not realize (ot be prepared to take the extensive time necessary to

deduce) all potential interactions between the model and every possible (or intended) initial

environment. For example, a plan may be used because "the Post Model in the answer library

matches the problem statement but the planner may not prove that all The statements in the Pre

Model must be true for all run-time environments. Hence, the plan might not be complete with

respect to a new enronrnent. In this situation, debugging consists of modifying or extending the,

plan to satisfy the set of newly violated predicates.

During careful evaluation
19 missing prerequisites are manifested by primitives generating

°complaints. In the blticks world, for example, the robot will complain if asked to move a block to a

position that, some other object already occupies, or to grasp a bloilkose top is cluttered.

'Analogous complaints are generated by Logo turtle primitives. Logo will complain if the turtle Is

V

I
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asked to move off the screen or if a turtle command is executed prior to the display being created

by a start-display function.

A unified approach is possible, which subsumes both thecomp)aints generated by primitives

mid the broader -Class of model violations (referring to a program's failure to accomplish its goals).

This synthesis is obtained by the use of Pre Models. If a Pre Model is associated with each

primitive, then unsatisfied prerequisites simply become model violations. For example, as

explained 'in section two, the Pre Model. for the HACKER operator Mow black X into ilocA Y

' would contain the assertions:.

(CLEARTOP X) ;X must have a cleartop to be picked up.

(ON X OLCI-POSITION) ;X oust be at some known old position.
(SPACE-FOR X N) ; The top of Y must. have room for X.

I
The inclusion of unsatisfied prerequisite manifestations in the class of model violations, and

the classification of prerequisite missing bugs as semantically incqmplete plans allows i unified

treatment of diagnostic and repair techniques. _Each model predicate, whether part of a primitive

operator's Pre model or a problem's model, has procedural knowledge associated with it that aids in
4IL

isolating the bug locus, proposing repairs, and thereby completing the plan.

5.2 Buis Artoing from Incorrect Conjunctive Plano

Prerequisite Clobbers BrotherGoal and Nonlinear Composition

Prerequisite Clobbers Brother Goal (PCBG) and Prerequisite Conflicts with Broiler (PCB) bugs

both arise from a linear plan. being applied to a non-linear problem. PCBG is the underlying

cause when attempting to build towers incorrectly from the top down. In HACKER terms, the goal

is MAKE -(AND ION -X' Y1 (ON Y Z)11. HACK ER's defauk solution is to achieve the conjuncts in

the order in which they appear. That is, this bug arises in situations in which the planning system

' ignores the possibility that one conjunct may have to be accomplished prior to the other. From the

PATN stanclkint, this bug is, caused by the planner following the (pragmatically Inappropriate)
k 4
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linear a's from the conjunction nod,. PATN's default, as explained previously, is to choose a

lh plan except when non-linear composition or decomposition critics detect an interaction.
..

In these terms, it is clear how debugging is to be accomplished. DAPR would re-apply PATN

to the problem with the advice that a linear plan is prohibited. This knowledge is represented as

an NLC 'predicate on the'arc from the CONJUNCTION node to the NONLINEAR

COMPOSITION node." (See figure 7.) The predicate checks for.satterns df the form.

(AND (ON X Y) (ON Y Z)), in the problem model.' If they occur, planning control is transferred

to the NONLINEAR COMPOSITION'node, with composition guidance being appended to the

ADVICE register. This advice, comteed by the NLC predicate, directs the order of re-

composition when planning eventually reachek the. Sequential Refinement loop. (See the overall

. .
ATN floWchart of figure 2). For thea lowerexample, the effect of the advice is to ensure that the

plan for achieving (ON X Y) is executed after the plan for (ON Y Z).

Sussman analyzed these bug detection patterns, but had no-coherent place for them In. an

.
_.

- overall theory. Ftrorn the standpoint of an ATN planner, they represent constraints on arc

transitions;-and their effects are to set registers to guide subsequent planning.

Preretku isite Clobbers Brother and Nonlinear Decomposition

PCB arises in the following problem: HACKER is asked to find space for both blocks A and

B on base block C, ie., to accomplish figure 19b In attempting this problem linearly, HACKER

first places A on the-center of C (figure 190, with no consideration of the brother goal of placing

.4

B on C. When the time comes to place B on C, there is insufficient room and block A must be
,

pushecl left (figure190. This results in a Double Move (rational form) manifestation.
.

HACKER's debugging grit:4y is to construct a plan that simultaneously takes account of both

prerequisites. (PLACE-FOR A C) and (PLACE-FOR 8 C)

-. The PATN-DAPR approach is to .have the debugging episode produce a non-linear

A

A
o I
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decomposition critic that triggers on multiple SPACE-FOR predicates: JSPACE-FOR X D ,

(SPACE OR Y D. After triggering, the critic's actillp is to append to the problem description
. ,

. .

reg PA, location predicates for X and Y with respect to Z. Given .explicit locations, a linear

decompos lion can take place.

PATN does not go beyond HACKER in handling this difficulty. The only claim here is that

theATN representation helps in understanding the issues involved: The planner's classification of

conjunctive non-linearities into min-linearities in 'the decomposition ior* in the composition (e.g.,

their order) makes both PCBG and PCB understandable -- and even to be expected given a

default preference for linear plans.

5.3. Bugs Arising from Incorrect Disjunctive Plans

The bug Strategy Clobbers Brother (SCB) arises when two different strategies are attempting to

accomplish the same goal, but conbla with each other. The particular blocks world example

discussed in HACK-ERinvolves the findspace strategy "remove block from surface" conflicting

with its brother strategy "compact by pushing to the left" (figure 20). Removal an undo a prior

compacting. HACKER notices the conflict and debugs by imposing an ordering on these
. .

strategies. Removal ought to be accomplished before compacting.

SCB can be understood in PATN terms as arising from incorrect transition at the node .

for disjunction plans. The disjunction is in the set of alternati e strategic for accomplishing the
410/

FINDSPACE goal." Although diijunction plans were not covered in section two; extending the

basic PATN design to handle this additional logical operand is not difficult. Figure 21 illustrates a

planning taxonomy for the decomposition of disjunction*.

1
The first major decisit..n involves resolving whether the disjuncts are exclusive or additive.

Exclusive disjunction refers to a set of options in which only one can be chosen: Exclusive
, -1* ...,

disjuncts cannot "partially" suctetd. Crossing the Atlantic by steamer or plane are mutually'

6"*.I 11.

ts

,
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GOAL: (AND (ON C A) (ON D A).)

D

compact >'

B

A

Compacting: Blocks pushed tolleftmoit position
i

A remove > D A

Removing: Blocks not required on A are.removed

compact

I 1

D

Wc1

D

nn

A
remove

Top of A is compact

D A
B

Conflict: Top of A no
longer compact

compacting then removing leads to conflict. The removing strategy
has undone the compacting.--

$ I
FIGURE 20
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)
lusive travel strategies. One does not travel half way by plane and then switch'to ship.

. *

Additive disjuncts can partially succeed and indeed may behave cooperatively Strategies for

finding space are of this kind. However, after deciding that the disjuncts are cooperatiie. the
. f

. question of whether there are possible interactions is still open. We intend to implement this in
. .14. . . Ai .. .PATN in a similar fashion to the handling of conjunction, with linearization cycles.I .

. Relative totthis taxonomy, the underlythg cause of SCB is an inappropriate arcchoice, similar
of ,

to PCBG and PCB. The difference is only that the nonlinearity,which has been ignored is
(.

relative to alternative disjuncts, rather than conjuncts. The planner may have chosen, by default,

to treat subgoals as independent additive disjuncts, when'in fact they' are dependent: subject to a -

rion-linear cohstnint on their order of application. The appropriate debugging techniques are also

Jsimilar, with corrective knowledge being attached to the arc transitions out of the`DISJUNCTION

node of the ATN.

.

5,4. Genera lizini the HACKER Reradigm

This section his argued that analysis'oe the faults in plans as incomplete or inappropriate arc

transitions provides la unifying framework in which to understand the miscellany of HACKER

bug types. We conclude this aspect of the discussion by summarizing the dii,nen sions along which
.

. .

PATN allows a broader view oi.prograni planning.and debugging than is present in HACKER.

HACKER contains an implicit theory oVf planning, consisting of an assortment of

programming techniques. A program is written through'successive macro expansion using these

technique We think that the PATN framework sitilAsses4lAcKER along this.dinn,'
bringing,greaterorganization to planning. Rather than as, a "bag of tricks" [SussmAn 1973, p t,

..

PATN would organize, programming 'knowledge ai decomposition techniques that convert
,.

standard logical .operators.- AND, OR, 'FOR-EACH '7 into procedtiral ,form. From this

standpoint, HACKER's program writing capability isa subgraph of the planning ATN, consisting. .
illt; # ,-, d
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of the identification and decomposition portions, but excluding problem reformulation.

2. HACKER is criticallrdependent on the annotations associated with the programildt writes;

but no clear theory of annotation 4s present. The linguistic analogrunderlying PATN leads to a

concept. of program annotation'as the hierirchical derivation tree that the ATN generates,

augmented by .semantic variables associated with node-in the derivation tree (which specify; such

contextual information as the problem specifteation, debugging caveats, and.re-compositions

advice). The set of semantic variables available during debugging is not arbitrary or ad hoc, but

A corresponds to snapshots of the contents of the ATN's registers during planning 'PATN's notion,

of commentary follows from the structure of its grammar, and from the semantics and pragmatics
,

of its augmented transition network.

3. By having a comprehensive set of planning constructs, it is possible to predict additional

types of bugs. For example, just as the wrong choke between linear and non-linear conjunction .

plans leads to bugs, so too does the wrong choice between any set of mutually exclusive planning

arcs elhanating from a given node. Thus, a similar class of bugs can be expected to arise in

deckling between round (simple tail recursive) and fully recursive repetition plans, and, indeed, in

human problem solving, this confusion is often displayed Another class of bugs arises when one

conjunct does not completely "clobber" another, but partly interferes The potentiality for this is
I _.

apparent when it is, remembered' that prZOm descriptions may be more complex lbgical models'
...

.than those aildresied by HACKER. Anexample of thisini-the blocks world is. 'build two green

toilers!" There may be no interference between the choice of color, but there may be interference

in the choice of blocks, as would occur if only a limited number of blocks were available.

4,tiACKER's critics can be characterized as transition constraints on ATN afcs, From this

broader viewpoint. one iminediately' notices the posiibility for positive as well as negative critics;

which argue for or against particilar plans More generally, given the situation-,of' choosing a

transition arc out of a given state in the planning network, a critic is ;imply 'some selection function

71
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msee-atcs.

of model violations. All that is needed is to include operator models as well as problem models.

This is not an 'added burden, since operator models are necessary anyway as part of the'primitive

library used by the identification planning technique.-
. .

In concluding our discussion of HACKERiiwe must stress that we agree with the oecoll,

HACKER philosophy that problem solving consists of both planning and debugging. Our
//

objection is qua HACKER treats these two complementary activities in ai isolated fashion.

HACKER does not pay sufficient attention to the theory of description for problems, for operators
44.

I

and for plans. We have tried to illustrate how dur linguistic theory, of planning and debugging

remedies this.

5. Unsatisfied prerequisite manifestations can be considered instances of the more general dais

A

e
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6. Conclusions

The prisper study of those who are concerned with the artificial Is the way a
which that adaptation of means to environments is brought about -- and central

Lto that is the process of design itself. The professional schOolspeill reassume
'their professional responsibilities just to the degree that they cart discover a

science of design, a body of intellectually tough, analytic, partly formatizable,
partly empirical tekhable doctrine about the design process. _

Simon, The Sciences of the Artificial; p. 58

In striving tiraenieve a rigorous, unified theory of planning and debugging, we havt used

concepts from consiiu I linguistics to characterize the problem solving process. Planning

senconcepts were repro using an augmented transition network, resulting in a structured theory

of planning which appears to be both p6werful and clear. Debugging was analyzed as the

diagnosis and repair of incorrect or incomplete plinl,' which inevitably arise in the course of
ia

rational but heuristic planning. We conclude by summarizing the limitations, extensions, and

potential applications of the)tructured Planning and Debugging theory.

1. Limitation' and Extensions of Structured Pl annini

My mind was struck by a flash of lightning in wkiicliits desire was fulfilled.
Dante, Paradiso (Canto XXXIII), in [Poly' 1965, p. 54)

I t
,Of course, there are .many aspects of human problem solving and its jtasAes of Verrill:lc:at

we haVe not touched upon. What follows is some of the specific limitations that we perceive in the

theory embodied by PATH, and possible extensions Co remedy them.

In section three, we discussel, bow the generation algorithm running over the ATN ip be

improved. These improvements could obtain better performaece within the boundaries im lied by

the knchyledge present in the 'network. They do not address thOte limitations inhere t in the

particular subset of planning knowledge plesent, i.e., the basic.taxononly.

Bearing in mind that our problerri descriptions are composed of logical operators, it is readily

8.,____apliatrent that the network currently contains techniqw for solving conjunctions and universal
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quantifications over a finite domain (repetition! }, however, the net
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k does not contain strategies

for handling disjunctions, negations, or exiitential quantification These clearly could be

incorporatedrated using the ATN formalism, but we have not addressed the last two in this paper..

(DlsJunctions were briefly discussed in section five.)

Moreover, with techniques for all of the logical operators, the planner would still remain

incomplete. Even if a problem is described as a conjunction, the planner may not find the

constructive solution necessary to accomplish the conjuncts. Interactions might exist that make it

impossible, or the particular technique for resolving a certain interaction may be unknown.

Nevertheless, we believe that the logistic framework for deicribing problems at least gives a super-,
structure on which to build more elaborate planning techniques. .The success of this super-

structure can be evaluated by the eaten. to which future research allows the collection of

decomposition and linearization techniques to be extended within the ATN framework.

Another PATN limitation lurks in the ad hoc nature of its reformulation techniques.

Theotetically, a general theorem prover could enumerate all equivalent models. But such a, strategy

would be computationally too costly to be useful. Instead, we enumerated a small number, of

heuristks. Future research might attempt to find a middle ground between general- deductive

strategies and specific procedural heuristics.. Such an accommodation is suggested by recent work

on theorem proving [Kowilski 1973; Moore 19751

to designing PATN. we have emphasized an hierarchical approach to planning. Such a

philpsophy is a simplification in that it does not take account of possible heterarchy (Minsky &

Papert 19741 By this 7 mean that in some planning situations, a person clearly, takes advantage

of bottom up evidence to guide an ordinarily top-down analysis. information and decisions do not

inevitably flow in'a single direction. A robot that trips over a bag of money on its way to rob a

bank should not kick the money aside and continue with the caper. Figure 22 illustrates an,
Heterarchkal Refinement loop, in which goals can be reordered after each recurs ,solution fora
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subgoal. Eventually this sort of ctimplexky must be addressed. However, our research plan, is first

to construct and experiment with a 'clearly, top-dawn structured planner, in order to better

understand its hmitattns as well as its virtues.

6.2. Summary of the Structured Debugging Viewpoint ,

ing DAPR, bugs and debugging were analyzed in the context of the Structured

Planning theory underlying PAIN. Since PATt(presents planning knowledge using an

augmented transition network, it is possible to describe the underlying causes of bugs as specific

classes of erroneous arc transition decisions during planning. The general form of a bug can

either be failure to include a needed constituent, or inclusion of an inapiropriate constituent.

These failures can be caused by. ignorance of or failure to obey ATN arc transitions and the

constraints on those transitions.

DAPR's debugging consists of diagnosis and repair. These activities are characterized by the

various data structures on which they operate. PAIN employrfoor representations for a

procedure- the problem description ('model'), the process Cchrontext"), the code, and, the plan

derivation.. The theory provides a notion of annotation as derivation trees, whict surniglarize the

\design decisions leading up to the a I code. This thorough, hierarchical representation of the

history of. the soluedn allows fir a r analysis of debugging which we bekeve will be of

practical value for example, in the con ction of programming environments. It

The ideas in this essay have developed, from those of Papert (1971a,b; ion Wssman (1973],

and Goldstein, (19741 To provide perspective on its relationship to earlier work, t k1/4 rrent theory

was contrasted with Sussman's HACKER. The claim that the present approach subsumes that of

HACKER was defended by several specific arguments. The relationship of HACKER': bug types

toithe current classification scheme was discussed.

7
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In the remainder of this section, we describe various applications of the Structured Planning

and Debugging paradigm: to protocol analysis, structured programing, and computer aided

instruction.

6.3. Prt.tocol Analysis

In [Miller k Goldstein 1976b1 an 'earlier version of the planning grammar was applied to the

task of ',thing elementary programming protocols. The recognition process was performed

manually, by the 'authors. Continuing our strategy of applying concepts from computational

linguistics to problem solving, we plan to experiment with the application of 'various algorithms

for natural language comprehensions to the task of automated protocol analysis. I
&Ghat:al question that arises is whether PATN provides a. spanning model for elementary

human problem solving. By this we mean- if PATN is put a mode wherein it generates all

possible solutions to a given problem (primarily through successive reformulitions), will the set of

programs produced include most of the successful solutions generated by people? More critically,

can PATN's solution process at an appropnate level of abstraction -- mimic that undergone by

human problem solvers? More specifically, is the protocol analysis task profitably approached

frottithe standpoint of determining which

used?

PATN's possible plans for a given problem is being

We do not know v(hether PATN will be sufficiently powerful to include all of the plans

typically pursued by students in elementary Logo programming tasks. If so, it will represent a step

forward in information processing psychology [Newell& Simon 1972121 Our preliminary analyses

4110

of man) Logo protocols have been encouraging. But extensive experimentation is needed before a

definitive answer will be available. Fortunately, we arein a good position to attack this set of

piythological questions because the Logo project has collected extensive data on student

performance [G Goldstein 1973; Okumura.19731

7s -
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(Miller & Goldstein 1976d] presentsa preliminary design for PAZATN, a PATN-based ,

automatic protocol analyzer. In applying PATN to protocol analysis; we envision modeling the

inetilithug by inducing, from previously analyzed protocols, a personalized (Modified) version of

the Planning ATN. The success of these models will be judged by the extent to which they

successfully predict subsequent behavior ci the task. APn, experimentation is needed to _

determine whether this approach is viable.

The parsing problem is complicated In analyzing human protocols by the possibility of

irrational planning errors and execution errors, in addition to the rational planning bugs discussed

earlier. Because of the increased uncertainty introduced by possible mistakes in executing a

-statement of code or constructing an ungrimthatical titan, we envision taking advantage of the

powerful search procedures created for parsing Teich utterances (such as those described by

Mien I1975], Woods et al. (1975], Paxton & Robinson (19751, and Lesser et at. (19753), in which

uncertainty in the auditory interpretation similarly complicates the parsing process.

6.4. Structured Prozrefring .

... the new reality is that 'ordinary 'programmers, with ordinary care, can_
consistently write-program segments which are error free from tbe start.

Harlan D. Walls, "On the Development of. Large, Reliable Programsf"-Proc.
IEEE Symp. Computer SoftwareReliability, 1973, p. 155.

It is sometimes argued by proponents of structured programming that discipline in coding an

eliminate all bugs The Structured Planning and Debugging theory sheds some light on this issue.

Rational bugs are unavoidable (or, at least, not worth avoiding). They correspond to heuristic

planning judgments made whgn na_bettrrellterla were availible,'as often occurs when

programmers are solving new problems. It is probably through the experience of whether their

default heuristic succeed or fail on a new class of problems /fiat individuals acquire skill. On the

other hand, irrational errors:and syntactic pbrining-bugs must surely be increased by unstructured,

careless programining. It is this class of errors, not rational.bugs, at we believe the structured

79
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programming movement as a whole has in mind, in calling for more disciplined planning and

coding.1.

Hence,.\potential application of pin theory is to the design of improved environments for

programming. In (Miller & Goldstein 1976c) we have presented the design for a programming

editor called SPADE-0, which encoura articulate, structured planning, usingJa context free

.grimmar. The virtues of working within such an editor, in which programs are. specified in terms

Of their plans, =include: (a) expressing ones programming, ideas in this fashion can.lead to

increased clarity, by drawing the programmer's attention to the nature of the,plan being applied;

amci. (b) articulating the plan increases the system's leverage Wald in the diagnosis and repair of

bugs.

However, context free grammars have limitations which prevent SPADE-0 from exceeding a

cytain plateau of utility. These limitations can be overcome by representing plan* not in terms of

context free rules, bur in terms of an ATN. Consequently, we envision using PATN to.extend the

. . .

capabilities of the SPADE editor, creating an improved version, SPADE-I. Qne might instruct this

improved editor to change a particular subgoal from being accomplished by means of

IDENTIFICATION.to a plan based on DECOMPOSITION by CONJUNCTION. The reason

might be that the original subprocedure fetched from the library .had' unacceptable side effects.

SPADE-I, the PATN-based editor, could .then lead the programmer through a sequence of trip-.
o

down planning decisions that would realize thr new plan. 'Because of the availability of PATN,

SPADE-I could, among -other improvements, assume greater responsibilities concerning low level'

Coding c$eci%ions.

PATN is a kip-down structured- programmer. As a result, the SPADE-I editor could assist the

programmer in exactly this process. Thli advantages of such an editor over conventional

programming environments derive frnm a broader and deeper taxonomy of planning concepts,
I

Thus, while believe that Dijkstra and his colleagues have pointed in the ight direction, in

*30
4
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calling for a structured approach to programming (see, e.g., (Dahl et al_19721). we also believe that

the type of researdi involved in constructing PATN provides an essential next step: ccloailing

madly what rational planning involves.

In futu/e research, we' plan to construct the PATN -based SPADE-I editor, and to experiment

with Is performance as a programming tool. The criteria by which it may be judged are the

extent to which programmers find it useful, and its effect on program writing and debugging time.

6,5. Al-based Computer Aided Instruction ,

In designing AI-based CAI programs, three critical problems are:- (a) indticing a model of the

student; (b) having a mcidet-of-the -expert-, and (c)-generating a tutorial plan-for guiding the

student toward expert competence. PlITN may aid in the resolution of these three problems in the

design of CAI systesps for tutoring programming and problertsoliing.

We have discussed how PATN may provide an important modeling tool. Implicit in PATN

is also a theory of learning. From the PATN standpoint, learning is the acquisition of new

grammatical rules, new semantic variables, and new pragmatic constraints for deciding between

akernative plans. Hence, a PATN-based tutor could compare the topology of the personalized

ATN induted for the student to the full PATN grammar, and chOose a Jiff rence as the issue to
qrs_-

be taught. Alternatively, the tutor could parse a given protocol, compare it with how PATN.would

have solved the problem, and utilize the differences as the specific issues to be discussed with the.

student in analyzing his or her performance on the problem. For example, a pragmatic plarffiing

bug might be.attributabk to the absence of a relevant critic. In this fashion, we attempting to

extend the Issues and Examples paradigm, develOped by Burton and Brown. (1976) for an

elementary arithmetic world, to the more complex environment of programming and problem
0

solving (G ldstein & Miller 1976a].Of.,rse,there are many other subtleties in designing intelligent computer tutors not touched

1

ay
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upon here, such as: (a) in what sequence4should the knowledge be taktght? (b) how intrusive

should the tutor be? (c),how can the tutor's behavior be explai;ed to the stu ent, so that it; actions

. are not mystifying? and, (d) cab sufficiently poweiful natural language capability be pro \ided so

that the student can interact Comfortably with the tutor? Neverthele s, PATN is a necessaryIt s

ingredient, as it provides a model of the planning expertise whi is t e conveyed by the tutor.

It is also worth observing that automatic protocol analysis and student modeling, even without

automatic tutoring, could be valuable to a human teacher. The parsed protocol and student model

might allow the teacher-to notice .more easily When the student is relying on a limited lexicon of
. . li

planning strategies, and whether the strategies that are known are organized in a successful, d
,

*

fashion. This kind of detaileciNdescription of the reasoniqg process offers the possibility of

escaping from the tyranny of standardized tests, whose outcome is an uninformative numerical
-,

score.

AO.

4

6.6. The Science of Heuristic
.."

Polya Jias called heuristic the study of the "means and methods of problem solving' (1962,

p. vil His various books 0957, 1962, 1965, 19671 offer insight into
'..

i .

discussing skills and abilities far in advance of the most intelligent

the nature of problem solving,

Al programs.-lit,heuristic, as
4.

, .

.Polya devalops it, is not yet a science. There are no formal representations for problem solving
t ,

_ .. ..
concepts; no rigorous means for experimenting with aliernative theories. The use of the computer

to'Implement and experiment with such theories makes the study of heuristic a science. PATN 4

represents a small contribution to this enterprise by experimenting with a particular procedural

representation -- the augmented transition network.

he most commonlieriticism of even the most insightful analyses of problem solving-is -- "but
. .,,

. how can I realize when' s particular, problem solving strategy is appropriate?" The gap that exists

dr.
between informal, itituitive discussions of thinking, and specific, useful guidelines, is illustrated by

. , ,

.../

.--

r

r
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r-,

thtself:descriptionof the grc,71-"'"thereatkian iloincarc cited in Jection two
P..

Every dky Last. down at my table. and spent an hour or tw 'trying,a great
number a combinatiens;'and I arrived pt no result. One ni 1 took some, black
coffee, contrary to my Austoit ad was unable to si p. A host of ideas kepi
surging tr,,rny head; I' could almost feel .them.fostli one another, Until two' of.
them isced, so to speak-Worm a stable co nation.

Poincared4., "Mathematical Discovery, in (Rapport 1963, p. 132]

'-
Goldstein & Miller

-

Surely we Guido better than advistntt studentsto drink coffee bef6re going"to p.

JO% 46.

,"'Attonpting to structure the skills of various fields, whether mathematics or carptntry in w
. . . _

..

''" form that' provides useful, precise guidelines to students is the fundarriental task of education'. : si*.- f,/ .. , , 6- ,

ggearch in computer science, computational linguistics, and artificial intelligence is finding 4... , . .

A

t

st

,

representations:- fOr- active._knowledge thatii.re precise, powerful, and' perspicuous. Ultimately, J
""r

,PATN's most important contribution is as an expeiftnent in this vein: exploring whether

particular computational formali4rn is useful as a reltresentation of problem tolv)ng skill. At,iush,
-v

it is a vital par:fief that investig ion or the design process which Stmontalls-for in the quotation

with iphich we began this section.:

.

o

0-

0.
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AI. FlOtg5

I. the name Structured Planning and Debugging emphasizes several themes., 0 toy' is

lhat the use of concepts from computational, linguistics has been, helpful to us in structuring twr
Theory. Expressing a cognitive theory in terms of a computer program, while perfectly rigorous, is

.. not necessarily perspicuous. For exampk, in the current essay the use of the ATN helps us to
orgartize t14 procedural knowledge we are trying to characterize. A second theme is that problem
sowing consists primarily of two complementary activities. planning and debugging. Previous
research has tf wally emphasized only one or the othe, at the expense of both. A goal_of our

theory is t6 pr ide an integrated understanding of both proCesses. A final theme is.that detailed

study of the p oblem solving involved-in program design is"a prerequisite for completely fulfilli g
the structured4rograniming movement's objectives, Such as program reliability We wish
emphasize the potential role of our research in this enterprise.

4

Goldstein & Miller

2. See also (Woodi, Kaplan & Webber L972). Woods' (1970) definition was an elaboration and

-, formalizatipa-of earlier work by Bobrow and Fraser (l96, and by-Zhocne, Bratley and Dewar
-Oka Woods attributes some aspects of the ideas to Kuno 0965) and Condly (1963).r

as - -. -,

S. While.the emphasis of the current essay mon inveligating the appropriateness of an ATN,

m. formalism for ning concepts, we have also found the context free grammar representation to

be a fistful' c+ron of planning' concepts/for certain purposes, such as parsing hurnan
programming protocols This suggests that l-feiclorn's (1975) ACFG (augmented context free

trdwimar) formalism might be an effective alternative to the ATN Its virtue that the
',relationship to the CFQ characterization of our ideas would be more direct Moreover, our actuar

implementation of PATN might twn out to be closer in spirit ro an AtFG model than 'an ATN.

4 To some extent, the distinction is secondary, since ACFG's and ATN's are.not only. formally-

equivalent power, but also structyrally comparable in a straightforward manner 'In any case,
whileACFG's suggest interesting possibilities, resolution of this issue goes beyond the current

paper ;

4. We should. emphasize that we do not regard this taxonomy' as being either complete or

. . unique. In later sections we.
rdiscuss particular ways in which it is incomplete. In (Miller *

'Goldstein 1976b we preseped a different version, 'In the context of parsing a student protocol.

The earlier tax omy-emph.asged examining_ the _thr_estions fr6m whence.* planner could of in.
. .

-
guidance; 'Ore-current one emphaVies examining thelogistid descriptionof -the problem at' haled.

intuition suggests that our current version is an improvemeqt, persuasive evidence for

favoring ,a given classification of 'planning concepts'muit await implementation and. Systematic

experimentation. The reader is referred to (Miller & Goldstein 1976a) for an overview of our

,research project as a ale. , . C ..

It
t

5. This is an rivers !irk/pion. If every solved problem were added to the answer library;

= the experiencediirOblem s ve-r might be Overwhelmed by tremensious numbers of uninteresting

soleitions The possibility ch forgetting' is a subtle -issue which we arenot currently in
. -

a position to address.

--...__ 6. Our use of, the term model should not be confused with its use in model-theory, The name
/- ../ .

- -clash is .upioitunite, resulting,from histovcal accident. In most cases our iv ?node/ can be
, .

cepiacetV by the phrase problem specification rithout altering the meaning
i ,

..

.

ft
4
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, . .. ,

7 The predicate cakulus is the problem deskription language of mathematics as well as a
variety of Al programs, most notably the STRIPS series of problem solvers [F)kes & Nils&on1971;

as framesiMinsky 1975]..1975; Winograd 1975; Goldstein 1975 might pr, increased expressive power;

\
.Fikes 197Z Fikes et al. 19721 Alternative problem-description languages, eased upon such concepts

we haveyet to thoroughly explore this issue. For ourpur oses in this article, the-problem
., descriptions are ply a, conjunction of properties and relations about some set of objects. As

sucia, they are &mon to most descriptive schemes including the predicate cakuluk\frarnet, and /
semantic nets (Quinlan, 1968; Winston 1975; Woods 19751 In practice, of course, our problem /
specification langdage is actually LISP: but the subset-of LISP which is used can be vielt1 in a
varlpy of guises. ill

4

8. It is possible that problems should also be indexed by their Pre Mcidels, if any. This would
enable the system to support a kind .of forward chaining. At the present tin*, the additional
overhead which this would entail doer not seem justified 'by its possible utility, at least for the
simple blocks world and Logo picture prtyems we are considering.

111,k .
_.. * .

9 For_aivpre detailed discussion of the link between turtle primitives and model descriptioni,
see chapier, six of iGoldstein19141 --A gloisary of primitive predicate- TOT describing -eleinehtat7 -:-----

itLogo pictures may be found in Goldstein's Appendix B.
.

°
a
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10. Vly impleMentation and experimentation can ultimately determine whether a given set of
, . reformu tion techniques will be adequate. A related problem for; future research is -to construct a

program that attempts to induce the model from a sketch. 'Me potentlikambiguity introduced by
such a module would place an even greater burden on the reforniulation strategies.

S. - *0' .
/

II. See [Polya.1965, Ch. 9] for a relevant discussion of Problems ithin Problems.

12. There are of ourse many additional reformulati quiet Many complex issues
-involving change of r restntation arise, suggesting rich areis urther research. ...

. . ihi .
I .

13. Strictly speaking, what Sacer,doti terms procedural-nets are actually, parfiall, ordered
program steps. The authors are indebted to B. Kuipers for reminding them 'hit such partial
orders are restricted cases of network's,- with additional properties useful to bpth NOAH and

.PAWN. - . .

11*

s,
,. 14. An alternative is to save the solutions to subproblems only in a working lemma library.

The issue is whether.eachanma is permanently stored for future reference, or only saved for the
duration of the' prob:lem MIllhanici. Techniques for determining the potential futUre relevance of

),

subproblems) are riot aigussed in this paper. i . 0
-.../- , , .

.;:, ,

15. We intiodace DAPR here because we have round that the metaphor of designing i..00- a
program is a usefurway to orlioize our ideas.- Ws do, in fact, intencf(or thitedesign to serve as 11,
theibasis for icnwlementing a clipuggihg module, At the same time, we are awarc-that iheset of 4
ideas presented are incompktessailw axchitectufe of Iheklebugging module, DAPR, is only parts
specified in this repot " i I . I

1

%
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16. This view tithe causes of bugs is a simplification. Some bugs have multiple underlying
causes: a situation which greatly complicates the troubleshooting- process, NeVortheless, 'the
techniques dove &ed here are useful, in that proceeding under the heuristic assumption of a single

(apsests often re able even incases where the assu,mptiOefirins-out to be false!,

-17. In the general case, model diagnosis requires .addressing difficblr problems of symb6lic
evaluation (see, e g , [Yonezawa 1976]). For most of the programs discussed here,'a simpler
approach; perfoririance annotation (Goldstein 1974] is possi):ile A diiectioa for research is to extend
the range of programming constructs which can be...verifie by the model diagnosis module.

.
18. DAPR:s three diagnostic techniquei are presen inin toughly the order in which tfiey

', would be applied. It is conceivable that this strict ordering would not be adequate That is, there,
may be debugging sittttiors for which prates) diagnbsis should be .applied "nor /o model
diagnosis, or even situaWfins for which the most effective debugging.crategf would be alternate,
applications of both strategies, and ro on. In the _first imFilementation of DAPR We will
experiment with the simpler approach

Tr.

'19. Careful evaluation [Hewitt &-fimith1975; Goldstein 1974; Suss^ n 1973) a Cliagribstio tool'

whereby a program is test by interpreting it in an extremely cautious mode, with e,xtensibe

checking of argument types, prerequisite satisfaction, etc. During ,normal evaluation it would be
prohibitively expensive to r utinely include such checks.

.

'20 PATN's default arc ordering and arc c strairits are designed to ensurelkat non-linear

planning is pitrsued if and only if a specific pattern of friferaction is detected. The local deciijon
process may described as follows. PATN" first tries, the'two nonlinear arcs Control tra9sf en to

the coiresponding states only when an NLC or tILD predicate "accepts" the model Otherwise, the

linear decoMpdsition t4 pursued

2 1. It is worth considering the' relationthip between_Newell & *Sirncin s 0972] production system

model and PATN. Strictly, ATNs are isomorphic to production s-ystemin rormal power; they are
also directly analogous in internal structure. 'A production systemcous'ists of a Set 'of
[pattern pk action] rules which operate over'a finite number of short terrt memorie(STM) locations.

An ATN may be thought of as a production' system in which a particular. slot in STM, the states
distinguished The arc transitions correspond tp rules, where arc con-maims map onto ,the left hand
s ides,.and arc actions map onto the right hand sides.-Distinguishing between the :state" register

and "other ("data") registers seems to have thevirtue of imposing greatek structure on the otherwise

homogeneous collection of productions. All the reputed advantages or rule-'based' s.ysitems, such ,as

modularity, still apply* The other.STM slots directly correspond to the register) of the ATN
model. Moreover, the ATN triodelasuggests a natural decomposition of the ,knowledge iii a given

rule, into syntax, serna et, and pragmatic constraints- One application of this breakdown is in
teaching: rather tha WAIN an entire rule, it may be that only one part need be taught. (The

authors ar. indebted t Kuipers for.emphasizifig the importance of this cowparison.)

J.
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